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ABSTRACT

Aim The biophysical impacts of invasive Australian acacias and their effects on

ecosystem services are explored and used to develop a framework for improved

restoration practices.

Location South Africa, Portugal and Chile.

Methods A conceptual model of ecosystem responses to the increasing severity

(density and duration) of invasions was developed from the literature and our

knowledge of how these impacts affect options for restoration. Case studies are

used to identify similarities and differences between three regions severely affected

by invasions of Australian acacias: Acacia dealbata in Chile, Acacia longifolia in

Portugal and Acacia saligna in South Africa.

Results Australian acacias have a wide range of impacts on ecosystems that

increase with time and disturbance, transform ecosystems and alter and reduce

ecosystem service delivery. A shared trait is the accumulation of massive seed

banks, which enables them to become dominant after disturbances. Ecosystem

trajectories and recovery potential suggest that there are important thresholds in

ecosystem state and resilience. When these are crossed, options for restoration are

radically altered; in many cases, autogenic (self-driven and self-sustaining)

recovery to a pre-invasion condition is inhibited, necessitating active intervention

to restore composition and function.

Main conclusions The conceptual model demonstrates the degree, nature and

reversibility of ecosystem degradation and identifies key actions needed to restore

ecosystems to desired states. Control and restoration operations, particularly

active restoration, require substantial short- to medium-term investments, which

can reduce losses of biodiversity and ecosystem services, and the costs to society in

the long term. Increasing restoration effectiveness will require further research

into linkages between impacts and restoration. This research should involve

scientists, practitioners and managers engaged in invasive plant control and

restoration programmes, together with society as both the investors in, and

beneficiaries of, more effective restoration.
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INTRODUCTION

Many invasive plant species are able to transform ecosystems

(Richardson et al., 2000; Ortega & Pearson, 2005), resulting in

losses of biodiversity, altered ecosystem functioning and a

changed capacity to provide services (Vitousek et al., 1997;

Pimentel, 2001; Levine et al., 2003; Didham et al., 2007;

Pejchar & Mooney, 2009; Vilà et al., 2010). Management

interventions that address these impacts are underway in many

parts of the world. They include measures to prevent

introductions, efforts to detect and eradicate new invaders,

biological control and various efforts aimed at mitigating

impacts (Pyšek & Richardson, 2010; Wilson et al., 2011). Many

programmes adopt a passive approach to restoring invaded

systems and simply aim to remove the existing invaders and

limit or prevent their regeneration. This approach often fails to

achieve the desired outcome of a functional ecosystem

dominated by native species (D’Antonio & Meyerson, 2002;

Hulme, 2006; Reid et al., 2009; Blackwood et al., 2010).

Practical problems that prevent the achievement of goals

include ‘secondary invasions’ – the rapid replacement of the

removed invasive species by others that capitalize on distur-

bance caused by the control operations. Resource alterations

caused by the invasive species, the management intervention or

combinations of these also often complicate or thwart

restoration efforts (Galatowitsch & Richardson, 2005; Buckley,

2008; Young et al., 2009). ‘Legacy effects’ – long-lasting

changes in ecosystem structure such as increased soil nutrient

levels that persist following the removal of the invasive species

– are another major problem (D’Antonio & Meyerson, 2002;

Marchante et al., 2009). The result is that many control and

restoration efforts have unplanned and undesirable outcomes

and do not achieve sustainable mitigation of the impacts

caused by invasive species. We contend that better mitigation

of impacts caused by invasive plant species demands an

improved understanding of the interacting factors that gener-

ate such impacts, and recognition that control and restoration

measures must explicitly address the fundamental drivers of

such impacts and their effects.

At least 23 Australian Acacia species (a group of 1012 species

in Acacia subgenus Phyllodineae native to Australia; see Miller

et al., 2011 for taxonomic details) are major or emerging

invaders in many parts of the world (Castro-Dı́ez et al., 2011;

Richardson & Rejmánek, 2011; Richardson et al., 2011). They

have a range of ecological and socio-economic impacts (Le

Maitre et al., 2000; De Wit et al., 2001; Marchante et al., 2003,

2008a,b; Gaertner et al., 2009; Hellmann et al., 2011; March-

ante, 2011; Rascher et al., 2011). The range and magnitude of

the impacts of existing invasions are becoming more severe,

and similar impacts are likely to emerge in other areas where

invasive acacias were introduced more recently (Richardson

et al., 2011). Multifaceted interventions are needed to achieve

effective control and restoration of ecosystems affected by such

invasions. Restoration efforts have been carried out in several

areas, with mixed results (Yelenik et al., 2004; Holmes et al.,

2008; Marchante et al., 2009; Marchante et al., 2011a). We

suggest that improved restoration demands clearer insights

into the trajectories and processes leading to degradation or

altered ecosystem functioning. We further propose that such

improved insights can be developed by collating insights on

Australian Acacia invasions from different parts of the world.

This study therefore seeks to develop a conceptual under-

standing of ecosystem changes driven by invasive Australian

acacias. We focus on three regions where problems are most

acute and where most information is available. We review the

impacts of acacia invasions, on both biophysical and ecosystem

services, drawing on published information and the insights of

the authors. We then develop a conceptual model linking

degradation to restoration and apply this to Australian acacias

based on case studies on three continents. By drawing out

cross-continental similarities and differences, we synthesize

insights to show how knowledge of the range and complexity

of impacts can be used to direct restoration towards desired

outcomes.

IMPACTS OF ACACIA INVASIONS ON

BIOPHYSICAL FEATURES AND ECOSYSTEM

SERVICES

This section addresses both the biophysical impacts (those

which affect ecosystem structure and function) and ecosystem

service impacts (those where the biophysical impacts also affect

the generation and delivery of ecosystem services to society).

Invasive Australian acacias, like many other invasive species,

have a wide range of impacts including a number that interact

in a synergistic fashion (Fig. 1; specific impact studies sum-

marized in Table S1). Acacia species have been shown to

induce simultaneous changes in the above- and below-ground

communities, microclimates, soil moisture regimes and soil

nutrient levels (Fig. 1; Marchante et al., 2003, 2008a; Yelenik

et al., 2004; Werner et al., 2010; Gaertner et al., 2011). Many

changes are directly attributable to key traits of Acacia species:

their rapid growth rates and ability to out-compete native

plants (Morris et al., 2011); their capacity to accumulate high

biomass; large, persistent seed banks; and their capacity to fix

nitrogen (Yelenik et al., 2007). These features enable them to

dominate competitive interactions with native species. Many of

the abiotic changes and biotic responses to them are tightly

linked and may advance simultaneously rather than sequen-

tially (Hobbs et al., 2009), as does the progression from

structural to functional impacts (Fig. 1).

The impacts of Australian acacias on biodiversity and

ecosystem properties and functions also affect the delivery of

ecosystem services and the benefits that society derives from

them. Ecosystem services include: supporting services (e.g. soil

formation); regulatory services (e.g. water flow and nutrient

cycling); production services (e.g. food and fibre); and cultural

or life-enhancing services (e.g. recreation or educational

opportunities to sustain human well-being) (Fig. 2; Table S1;

Daily, 1997; Brauman et al., 2007). Invasions by transformer

species (sensu Richardson et al., 2000) have marked effects on

the factors that regulate ecosystem processes and their
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interactions (Chapin, 2003): resource supply, the modulating

environment, disturbance regime, species interactions and

human activities. These changes in ecosystem processes in turn

alter the supply of corresponding ecosystem services (Pejchar

& Mooney, 2009; Vilà et al., 2010). The effects on supporting

services propagate directly and indirectly through all the

services (Kinzig et al., 2007; Fig. 2). Regulating and cultural

services are affected by the initial supporting service impacts.

Provisioning services are altered by the changes in regulating

services. While some services (e.g. wood supply) may be

?

Introduc on of Acacia species

Increased Acacia biomass BS

Increased 
H2O 
uptake AF

Nitrogen 
fixa on BF

Increased fuel 
load  BS

Increased fire 
intensity/severity 
AF

High seed 
mortality 
BS

Produc on of 
allelopathic
compounds BF

High sprouter
mortality BS

Changed 
habitat  BS

Shading 
AS

Increased 
compe on 
for light BF

Altered 
soil 
climate 
AS

Increased 
li er layer 
accumula on 
AS

Suppression of 
some species 
BF

Increased 
compe on 
for moisture 
BF

Changed plant  
community 
structure BS BF

Changed plant-animal 
interac ons and 
mutualisms BF

Changed faunal 
community 
structure BS BF

Enhanced 
growth of 
some species 
AF

Decreased 
na ve spp
seed bank 
inputs BS

High Acacia 
seed 
produc on BS

Co-op on of 
bird dispersal  
& myrmeco-
chory BF

Altered soil N 
availability + C 
and other 
nutrients AS

Acacia 
dominance of  
seedlings BS

Acacia 
dominance of 
seed bank BS

Altered 
microbial 
systems / 
communi es 
BS, BF

Increased Acacia 
dominance BS

Figure 1 A cause-and-effect network diagram of the impacts of Australian Acacia species showing the pathways of the main mechanisms

and their interactions. The width of the arrows indicates the relative importance of the pathways based on the literature (Table S1); the

dotted arrow indicates a probable link. The mnemonics are composed as follows: B = biotic, A = abiotic, S = Structure and F = function.

For more explanation, see the text, and for specific studies, see Table S1. Colours are included to simplify interpretation and indicate

successions of cause and effect. We have omitted feedbacks and feed-forwards loops (e.g. between successive generations of invaders in

fire-prone systems) because they become too complicated to include in a single diagram.

Australian acacias: linking impacts and restoration
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enhanced by Acacia invasions, most provisioning services are

negatively affected (Fig. 2, see also Fig. S1). Ultimately, human

well-being is negatively affected by the overall changes in

provisioning, regulating and cultural services, with decreases in

the supply and diversity of available material, and safety and

freedom of choices being compromised (Pejchar & Mooney,

2009).

There are many examples of impacts on ecosystem services

and the benefits they provide (see Table S1). Riparian stands of

Acacia mearnsii in South Africa use more water than adjacent

dryland invasions by the same species or the native vegetation

the invaders replaced (Dye et al., 2001; Dye & Jarmain, 2004).

The high biomass in dryland Acacia stands is directly related to

their transpiration, and thus, the extent of reductions in river

flows from invaded watersheds relative to the natural vegeta-

tion (Le Maitre et al., 1996, 2000; Le Maitre, 2004). Invasions

can therefore result in reduced availability of water to

agriculture, industry, recreation, conservation and for domes-

tic use, with significant implications for water security

(Görgens & van Wilgen, 2004). The high biomass of Acacia

saligna (and other acacia species) also leads to high fuel loads

(van Wilgen & Richardson, 1985), which can increase the

severity of fires, kill resprouting plants and seed banks and alter

the soil structure and condition by burning the organic matter

that binds soil particles, inducing water repellency (Fig. 1;

Scott et al., 1998; Van Wilgen & Scott, 2001; Holmes, 2001).

This in turn adversely affects the soil stabilization and sediment

regulation services and could increase river and dam sedimen-

tation rates.

Although many invasive alien plants were introduced and

are still used to deliver certain services and benefits (generally

production, regulation or aesthetic services, Fig. S1; Kull et al.,

2011), the subsequent invasions usually have a detrimental

effect on service supply (De Wit et al., 2001; Van Wilgen et al.,

2008, 2011), and this has adverse impacts on the societies that

depend on these services (Fig. 2; Pejchar & Mooney, 2009; Vilà

Acacia introduction and increasing dominance

Species
diversity reduced

Biological
interactions impaired

Landscape
diversity reduced

Response diversity
lost

Functional diversity
lost

Supporting services

Ecosystem processes altered (original processes disrupted)
Habitats changed (simplified)

Provisioning services

Diversity of food resources reduced

Decreased diversity of fibre available

Wood supply increased 

Water supply reduced

Genetic material lost

Medicinal plants potentially lost

Cultural services

Tourist experience reduced

Recreational areas degraded

Sense of place compromised

Human well-being

Freedom and choices reduced Safety compromised Material needs impaired

Insurance value Market and non-market value

Regulating services

Micro 
climate
altered

Flood mitigation
services negatively
affected

Potential for promoting 
pests and diseases
increased

Nutrient and 
carbon pools 
increased & 
cycling modified

Figure 2 Conceptual model of the impacts of invasive Australian acacias on ecosystem services, illustrating how impacts on key elements of

biodiversity and ecosystem structure and function propagate upwards to influence ecosystem services. Adapted from Kinzig et al. (2007).

D. C. Le Maitre et al.
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et al., 2010). Invasions have often led to conflicts of interest

where the benefits of the goods and services provided by the

species are accrued by one group of stakeholders, while the

associated adverse impacts are borne by others (Van Wilgen

et al., 2011). For example, the benefits from the commercial

use of A. mearnsii in South Africa for wood chips and tanbark

(Griffin et al., 2011) accrue to a relatively small group, while

the costs of invasions are borne by a much wider group (De

Wit et al., 2001; Van Wilgen et al., 2011). These conflicts are

difficult to resolve when proposing control or containment

measures and when motivating for restoration of natural

ecosystems. The complexity of these conflicts makes a strong

case that societal support for management, and restoration of

affected ecosystems should be based on a thorough under-

standing of the impacts on services and benefits that society

derives from those ecosystems (D’Antonio & Meyerson, 2002;

Clewell & Aronson, 2006; Turpie et al., 2008; Aronson et al.,

2010). Such deconstruction facilitates the objective evaluation

of particular services, thus paving the way for resolution of

conflicts of interest.

DEGRADATION AND RESTORATION POTENTIAL

– THE ELUSIVE LINK

Restoration solutions have tended to be context specific, but a

growing body of research seeks to provide broadly applicable

strategic frameworks that recognize strong links between an

understanding of the ecological responses to ecosystem deg-

radation and linked options for restoration (Holmes &

Richardson, 1999; Suding et al., 2004; Holmes et al., 2005;

King & Hobbs, 2006; Miller & Hobbs, 2007; Temperton, 2007;

Bascompte, 2009; Hobbs & Richardson, 2011). We draw on

elements of these frameworks in the present study.

Practical experience and experimental manipulations sug-

gest that the likelihood of successful passive restoration

(through autogenic recovery) decreases rapidly as the intensity

and/or duration of the perturbation increases, but not

necessarily linearly (Milton et al., 1994; Whisenant, 1999).

Degradation and restoration can be conceptualized as contin-

uous responses punctuated by stepwise changes as one or more

thresholds are crossed (Fig. 3; Suding et al., 2004; King &

Hobbs, 2006). As degradation progresses, the effects of the

driving factors initially become evident through changes in

biotic structure (e.g. species abundance, initial stage), then the

ecosystem may pass a threshold following a disturbance that

leads to changed abiotic structure (e.g. soil structure) and lastly

crosses a second threshold that becomes evident through

changes in functional components (e.g. disturbance regimes)

and resource loss (King & Hobbs, 2006). These changes initiate

feedbacks via biotic and abiotic components and their

interactions, resulting in further degradation as long as the

drivers of change operate. Initial changes in biotic structure

(initial stage, Fig. 3) may often be reversed without significant

intervention although some manipulation of native plant

community structure (e.g. species re-introductions) may be

necessary. Changes in abiotic structure and function are more

challenging to reverse, especially where key processes have

become non-functional or ecosystem thresholds have been

passed (post-disturbance or after protracted impacts, Fig. 3;

Groffman et al., 2006; Hobbs et al., 2009). The same general

model can be applied to invasions by alien plants (Brooks

et al., 2010), including acacias (Gaertner et al., 2012). We

apply this conceptual model to case studies across three

continents highlighting the links between degradation and

restoration (Boxes 1–3).

Synthesis of cross-continental similarities and

differences

The three case studies of Acacia invasion share some important

drivers of change: the triggering of invasion by fire (or other

disturbance), production of large, long-lived seed banks,

increased soil nitrogen, suppression of native vegetation and

eventual depletion of native seed banks and reduced restora-

tion potential (Fig. 1, Boxes 1–3). Acacia invasions in South

African fynbos and Portuguese dune systems have the most

similar invasion trajectories and impacts, perhaps because the

species studied, A. saligna and Acacia longifolia, respectively,

have similar growth forms and canopy structures, which create

functionally similar environments in dense stands. Both

ecosystems have nutrient-poor, deep, sandy soils and support

shrubland vegetation. In contrast, the invasions in Chile are in

taller forest and riparian vegetation on floodplains, where soils

vary from rich clay soils to poorer, sandy soils. In South Africa

and Portugal, invasion results in increased biomass and litter

layers, rapid species displacement following fire and changed

decomposition processes. In Portuguese coastal systems

(Marchante et al., 2008b) and lowland fynbos (Yelenik et al.,

2004), the soil organic matter and leaf litter layer increased,

resulting in higher soil moisture levels following invasion. By

contrast, in Chilean forest, soil moisture levels decreased

following Acacia invasion.

The progression of invasion stages is strongly linked to fire

cycles; for example, in fynbos, three fire cycles (a total average

time-span of 45 years) drive a change from natural shrubland

vegetation with scattered Acacia trees to a dense Acacia

woodland with depleted native seed banks (Box 1). In fynbos,

fire stimulates germination in both native and Acacia seed

banks, whereas in Chilean forest and Portuguese dunes, fire

promotes Acacia recruitment more than the native species. Fire

is a key ecosystem process in fynbos, but it is less important in

Portuguese dune systems except in the interior. Fires were rare

or exceptional in Chilean forest ecosystems prior to human

settlement but have become frequent following the establish-

ment of extensive plantations of pines and eucalypts.

There are also differences that appear to be unique to the

particular ecosystem that is invaded and merit further research.

For example, in Chile, a light-demanding native forest species

did not survive under closed Acacia stands, while other more,

shade-tolerant species survive underneath these Acacia stands

but show very limited growth (Box 3; Fuentes-Ramı́rez et al.,

2011). In fynbos ecosystems, native seed banks persisted for

Australian acacias: linking impacts and restoration
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one fire cycle longer following dense A. saligna invasion in

mountain fynbos than in lowland fynbos on deeper sands

(Holmes, 2002). In disturbed lowland fynbos, fossorial mam-

mals are particularly abundant and can inhibit native species

recovery following Acacia removal (Box 1; Holmes, 2008).

Similar ecosystem-specific invasion impacts have also been

shown in other studies. For example, in native forests, in South

Africa, the biomass impacts of Acacia melanoxylon invasion

may cause little or no change in structure and may facilitate the

regeneration of some forest tree species (Geldenhuys, 1986,

1996). In Chile, however, although there was some recruitment

and persistence of shade-tolerant native forest species, this did

not lead to forest re-establishment (Box 3), suggesting that

knowledge of ecosystem types does not necessarily allow the

prediction of effects. Thus, an understanding of both regional

native ecosystem dynamics and localized invasion dynamics is

needed to guide effective restoration. However, the develop-

ment of a broader understanding, such as the cross-continental

comparisons made here, can complement this by guiding

localized studies to determine which of the generic impacts are

likely to be at play in different situations.

Trajectories of Acacia invasion, thresholds and their

implications for restoration

Effective restoration requires an understanding of the drivers

and dynamics that have resulted in ecosystem modification

(Richardson et al., 2007; Holl & Aide, 2010). The first step

should be to evaluate the degree to which the ecosystem has

been altered by the invasion and whether biotic or abiotic

thresholds have been crossed. The conceptual model and case

studies presented here suggest that fire history, seed banks, leaf

litter and soil characteristics should be assessed as they play a

significant role in some invasions by Australian acacias and

provide important pointers for ecosystem restoration strategies

(Fig. 3, Boxes 1–3). The type and degree of alteration depends

on the traits of the invasive species and on the ecosystem

invaded (see Impacts of Acacia invasions on biophysical

features and ecosystem services section above) and are key

determinants of the restoration requirements and outcomes

(see Table S2 for a summary of specific studies). In South

African fynbos invaded by A. saligna, fire is the primary driver

of change (Box 1). Recruitment of native seedlings is reduced

by the depletion of native seed banks and competition from the

abundant Acacia seedlings. A threshold for autogenic recovery

will be passed if, after subsequent fire cycles, Acacia species

dominate the community, and the native seed bank is depleted.

In Portuguese coastal dunes, biotic changes follow a similar

pattern; however, despite impoverished native seed banks and

a dominance of A. longifolia, the native ecosystem is still able

to partially recover autogenically. This suggests that degrada-

tion thresholds have been crossed, but with active restoration,

such as the introduction of native species or removal of litter,

the system may recover.

In both dune and fynbos ecosystems, soil enrichment by

nitrogen-fixing Acacia species can result in herbaceous species

becoming dominant after Acacia control. Higher soil N (which

may facilitate both nitrophilous species and the acacias

themselves) and thick litter layers may further hamper

restoration and may need to be mitigated for the system to

fully recover, suggesting that abiotic thresholds have also been

crossed in some situations.
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Primary processes 
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Autogenic recovery 
possible
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Figure 3 Conceptual model of ecosystem degradation and thresholds (vertical bars) in key ecosystem process, which determine the

responses of the system to release from the pressures driving degradation (adapted from King & Hobbs, 2006 and Gaertner et al., 2012). We

recognize three stages separated by thresholds marked by disturbances or other factors. The initial stage where the system is able to recover

autogenically; post-disturbance recovery where the biota has changed and restoration requires biotic manipulation; and protracted invasions,

sometimes following further disturbances, where ecological process has collapsed and requires abiotic manipulations to restore them.
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Successful restoration of Acacia-invaded systems needs to

include follow-up treatment as all invasive Acacia species

accumulate persistent soil seed banks across a range of

ecosystem types. Both A. saligna and Acacia dealbata (A. lon-

gifolia less so) resprout after cutting; it is thus important to use

herbicide in the control treatments. If the native seed bank is

depleted (biotic threshold crossed), re-introduction of native

species through either planting or sowing is required to restore

ecosystem structure. In South African fynbos and Portuguese

dunes, fire can be used to facilitate litter removal and to reduce

Box 1 Case study: Acacia saligna invasion in South African fynbos – driven by fire and competitive ability (faster growth rate, greater

biomass and rapid accumulation of a persistent soil-stored seed bank)

Acacia saligna was widely planted for drift sand control and tannin production following its introduction to South Africa’s Cape Floristic Region

(CFR) in the 19th century. It has since spread to form extensive dense stands, particularly in lowland fynbos. Stand expansion and densification are

driven by fire, as the tree resprouts and its seeds require a heat pulse to germinate (Jeffery et al., 1988). The tree produces large numbers of long-

lived, hard-coated seeds that can remain dormant in the soil (Milton & Hall, 1981), and seed banks in excess of 40,000 per m2 have been recorded

(Holmes et al., 1987).

Small mammals can consume all the seed of scattered trees, but seeds are also removed by ants that take them below ground in their nests, safe

from predation. These native ants have probably been a major vector in the establishment of dense stands (Holmes, 1990). During initial invasion,

native fynbos richness (F) and seed banks (E) remain relatively unaffected. Disturbance by fire triggers germination in fynbos and A. saligna, but

A. saligna quickly outgrows the fynbos in the post-disturbance recovery stage to form tall, dense stands (A) that exclude the shorter fynbos and no

longer provide suitable habitat for small mammals. This leads to a rapid accumulation of the Acacia seed bank in the soil (C). The time-scale for

each invasion stage links strongly to the fynbos fire cycle, which averages 15 years (range 4–40 years).

Figure Box 1 Trends in key drivers and ecosystem responses to different stages of A. saligna invasions in South African fynbos: (A) Acacia density,

(B) soil nitrogen, (C) Acacia seed bank, (D) soil moisture availability, (E) native seed banks and (F) native species richness. The dashed vertical line

represents a disturbance event; in this case, fire that results in a threshold being crossed. The box indicates the vicinity of the threshold to

protracted invasions.

After a fire, in the newly formed, dense Acacia stand (A), fynbos seed banks persist in the soil at lower densities (E; Holmes, 2002); following a

subsequent fire, these will germinate alongside the Acacia seeds and fail to establish. The higher soil nutrient status (B) in Acacia-invaded fynbos

(Musil & Midgley, 1990) does not hamper fynbos seedling growth; rather, the seedlings are outnumbered and outgrown by the acacias (Musil,

1993). Acacia saligna has a faster growth rate than a native shrub (Protea repens) and out-competes it when grown in mixture (Witkowski, 1991).

Fire is the primary driver of change. With each subsequent fire cycle, A. saligna becomes increasingly dominant, and the fynbos seed banks more

depleted, with a concomitant reduction in autogenic restoration potential (Holmes and Cowling, 1997a,b). There is a slight increase in surface soil

moisture content (D) in dense stands, probably linked to the increase in soil organic matter (Yelenik et al., 2004).

Once the severity of the invasion exceeds the threshold for autogenic (self-sustaining) recovery, control of Acacia results in herbaceous species

becoming dominant (e.g. grasses Cynodon dactylon, Ehrharta calycina, and alien annuals) (Holmes, 2008). This change to an alternative stable state

is supported by the abiotic changes (higher soil nitrogen levels that promote the competitive grasses; Yelenik et al., 2004) and maintained by

a positive feedback loop with fossorial mammals (Holmes, 2008). The fossorial mammals increase in density and activity in grass-dominated

ecosystems and create an extremely hostile environment for fynbos re-establishment. Re-introduction of native species must be preceded by small

mammal control, either directly, or indirectly through the removal of grasses using herbicide and fire. To pre-empt the dominance of herbaceous

species after clearing A. saligna, missing guilds such as long-lived native shrubs and restioids should be re-introduced, preferably by seed following

a summer management burn.
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Acacia seed banks. In South African fynbos, fire provides the

necessary germination cues (including heat pulse and smoke

treatment) to stimulate native species recovery provided that

fuel loads are appropriate. In Portuguese dunes and Chilean

forests, this strategy should be carefully planned and used as a

compromise as it may reduce native seed banks.

Box 2 Case study: Acacia longifolia invasion in Portuguese coastal dunes (Nature Reserve of São Jacinto Dunes – NRSJD) – driven by fire,

biotic and abiotic changes

Acacia longifolia was widely planted to stabilize Portuguese coastal dunes between the 1890s and 1940s. Stimulated by fires, it has spread to form

extensive dense stands that progressively transform the original vegetation, characterized by a low plant cover (herbs, few shrubs and trees), to

continuous stands dominated by A. longifolia (Marchante et al., 2003; Marchante, 2011; Rascher et al., 2011).

While the density of A. longifolia (A) in NSJRD is still low, the cover of native plants decreases, but native species richness (F), native seed banks

(E), water content at soil surface (D) and total nitrogen (B) are not significantly affected. Many long-lived A. longifolia seeds are produced (over

12,000 per m2 per year), accumulating up to 1500 seeds per m2 in the soil seed bank (C) after a few decades (Marchante et al., 2010). Immediately

after a fire, the density of A. longifolia (A) and native species richness (F) are greatly reduced; total nitrogen (B) may decrease, depending on fire

intensity. Acacia longifolia quickly recolonizes, mainly through the germination of seeds, initially partially depleting the seed bank (C) but rapidly

replenishing it. As A. longifolia reaches maturity, it rapidly reaches > 80% cover, out-competes native species and accumulates a thick litter layer.

Figure Box 2 Trends in key drivers and ecosystem responses to A. longifolia invasions in Portuguese sand dune systems: (A) Acacia density, (B)

soil nitrogen, (C) Acacia seed bank, (D) soil moisture availability, (E) native seed banks and (F) native species richness. The dashed vertical line

represents a disturbance event; in this case, fire that results in a threshold being crossed. The box indicates the vicinity of the threshold to

protracted invasions.

The native seed bank (E), which persists when A. longifolia is present for short periods and/or at low densities (Marchante et al., 2011b),

decreases after fire owing to seed germination or destruction. As the invasion becomes protracted, native species cover decreases even more

although native species richness (F) is sustained for much longer because some species persist at low densities (Marchante et al., 2003; Marchante,

2011). In these nutrient-poor sand dunes, soil carbon and nutrients, especially total nitrogen (B), progressively increase after invasion, but these

increments only become evident after protracted invasion (i.e. several decades), although microbial processes and mineral nitrogen are affected

much earlier (Marchante et al., 2008a,b). Soil water content (D) increases after A. longifolia invasion as a result of increases in soil organic matter

and leaf litter accumulation compared with the native state, which is characterized by bare sand and low native species cover (Marchante et al.,

2008a).

As the invasion becomes protracted, the autogenic recovery potential of invaded areas decreases: native seed banks (E) become more

impoverished (Marchante et al., 2011b), reinvasion potential (acacia seed bank, C) increases (Marchante et al., 2010) and soil carbon and

nutrients, especially nitrogen (B), become and remain high for long periods (Marchante et al., 2009). Autogenic recovery after removal of

A. longifolia is slow with only partial recovery after 6 years (Marchante et al., 2009, 2011a) suggesting that full autogenic recovery may not be

possible. Nevertheless, generalist plant species rapidly colonize the cleared areas and are slowly replaced by some characteristic dune species, with

some native legume species growing better in invaded soils (Rodrı́guez-Echeverrı́a et al., 2009). These results suggest that ecosystem thresholds

may have been crossed, but the system may recover with active restoration. In areas invaded for protracted periods, removal of the nitrogen-rich,

slow-decomposing litter layer facilitates ecosystem recovery, both biotically (plant and microbial communities) and abiotically (soil nutrients)

(Marchante et al., 2004, 2009, 2011a), as well as reducing the A. longifolia seed bank (Marchante et al., 2010). Other active restoration practices

namely transplanting of native species and use of moderate fire to facilitate litter removal and simultaneously deplete A. longifolia seed bank may

also help to restore invaded ecosystems. Follow-up control of A. longifolia and other alien invasive species is essential to sustain recovery of native

ecosystems (Marchante et al., 2010).
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The success of a restoration strategy may depend on the

control method applied to remove the invasive acacias. For

example, in a study of dense A. mearnsii removal from fynbos

riparian zones to increase river flows, restore sediment

regulation processes and aquatic and riparian ecosystems,

different results were noted for different control methods.

Autogenetic recovery was found to be possible in 97% of

A. mearnsii invasions provided that a ‘Fell & Remove’ treat-

ment was used (Blanchard & Holmes, 2008). Removal of the

felled Acacia material from the riparian zone without burning

resulted in the best recovery because this allowed native species

to recolonize from the soil seed bank and from propagules

washed downstream. By contrast, in some areas that were felled

and burnt, severe fires killed native seeds and resulted in very

dense Acacia recruitment. This necessitated a follow-up foliar

herbicide treatment that killed both Acacia and native dicot-

yledonous seedlings, resulting in a grass-dominated, weedy

community. These complexities in ecosystem response to

restoration activities demonstrate the need for ecological

research to guide scientifically based strategies. Generalities

are apparent, such as recognizing the initial biotic threshold.

However, the specific context still needs to be taken into

account and understood by checking for common impacts

such as abiotic soil changes.

Effective restoration is never simple. Even after ‘apparent

success’ in control of the trees, seeds of most Acacia species can

lie dormant in the soil for decades (Milton & Hall, 1981;

Pieterse & Cairns, 1988) and can hamper restoration following

subsequent disturbance events such as fire. In this case, follow-

up action and biological control can play key roles in the

Box 3 Case study: Acacia dealbata invasions in Chilean woodlands and forests – driven by disturbance and competition

Acacia dealbata was introduced to Chile for ornamental purposes, and invasions currently extend from Los Lagos in the south to Valparaiso in the

north. The species occurs in riparian habitats, roadsides and heavily disturbed areas (Pauchard & Maheu-Giroux, 2007).

Figure Box 3 Trends in key drivers and ecosystem responses to A. dealbata invasions in Chilean native forest. (A) Acacia density, (B) soil nitrogen,

(C) Acacia seed bank, (D) soil moisture availability, (E) native seed banks and (F) native species richness. The dashed vertical line represents a

disturbance event, often a fire, which results in a threshold being crossed. The box indicates the vicinity of the threshold to protracted invasions.

In Chilean native forests, the trends during initial invasion are similar to those in the other case studies. Disturbance (such as fire or clear

cutting) depletes native seed banks and reduces native species cover, opening up space that A. dealbata rapidly colonizes. During post-disturbance

recovery, the acacias rapidly increase their density (A) through epicormic resprouting, out-competing native species (F), increasing soil nitrogen

(B), accumulating large seeds banks (C) and decreasing available soil moisture (D). After protracted invasions, an alternate stable state is reached,

which is similar to that in the fynbos with Acacia dominance and little or no forest recruitment. In Chile, fire promotes the spread of A. dealbata

by reducing native species cover and stimulating epicormic sprouting. Fire may also reduce native seed viability and stimulate germination of

Acacia (a positive feedback loop). Native forest species abundance and cover is markedly lower under Acacia canopies (Fuentes-Ramı́rez et al.,

2010). Experiments on native species recolonization found that survival is poor and is only successful if the Acacia canopy is opened up, suggesting

that light and possibly soil moisture are limiting recovery of some forest species (Fuentes-Ramı́rez et al., 2011).

Acacia dealbata is particularly invasive in Chile because of its phenotypic plasticity; its high capacity for resprouting after fire and clear cutting;

its allelopathic properties; and its rapid response to anthropogenic disturbances (Fuentes-Ramı́rez et al., 2011). The species is heavily used for

firewood when near human settlements, but clear cutting and fire promote resprouting, increasing the rate of expansion across the landscape.

Forestry companies have become aware of the threat this species poses to protection zones in their plantations and are considering strategies to

reduce its dispersal and restore invaded areas. However, there is still no unified effort to restore invaded areas, and impoverished rural

communities still consider this species an important resource.
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integrated management of the Acacia species and long-term

restoration (Richardson & Kluge, 2008; Wilson et al., 2011).

Development of more effective measures for control and

restoration will require closer collaboration between those

studying the impacts and those attempting to restore the

affected systems, because the interactions are complex and

often not observable. Responses to control treatments can alter

recovery pathways in ways that make restoration more difficult

and intensive, providing a strong argument for involving

restoration specialists in the planning of control measures.

Restoration specialists can also help to design the research into

impacts so that it addresses the causes of changes in ecosystem

states and responses that dictate, for example, whether an

autogenic recovery or active restoration strategy is adopted.

We have outlined some priorities for research in Box 4.

Motivating for active restoration

We have described how invasive Acacia species trigger

biophysical changes and altered biodiversity, ecosystem

functioning and ecosystem service delivery and the implica-

tions of these changes for successful restoration. We have also

emphasized that active restoration will be required to restore

ecosystems following protracted invasion as they are unlikely

to recover autogenically. Ideally, information about the

ecological and societal consequences of invasions should result

in investments in control and restoration, but this is rarely the

case in practice. The emerging evidence of impacts should be

used to engage society in dialogue about the costs and benefits

of control and restoration and gain their support for such

investments.

There is a growing recognition that we live in a world with

finite natural resources and that we need multifunctional

landscapes, which simultaneously protect biodiversity, preserve

ecological functions, provide a range of ecosystem services and

fulfil a variety of human needs (O’Farrell & Anderson, 2010).

Invasions by acacias and other species pose a significant threat

to the ability of those landscapes to meet such needs, and this

threat needs to be addressed. Restoration requires the invest-

ment of substantial resources, so preventing or containing

invasions early on is vastly preferable; however, there are many

situations where clearing and restoration are justifiable in long-

invaded areas (Wilson et al., 2011). Options for reducing the

direct investments include tailoring incentives for restoration

to consider the extent of invasion, impact intensity (Holmes &

Cowling, 1997b), perceived costs and benefits of invasive

Acacia (Shackleton et al., 2007; Kull et al., 2011) and perceived

value of ecosystem services (Turpie et al., 2008; Bryan et al.,

2010) as well as seeking economies of scale (see Appendix S1).

The mismatch between management units and ecological

process boundaries, and the involvement of diverse stakeholder

groups, creates organizational challenges for rehabilitating

landscapes (Briggs, 2001; Postel & Thompson, 2005; Hein

et al., 2006). Coordination of local-scale actions with regional

conservation planning can be aided by spatially mapping social

factors (Knight et al., 2010; O’Farrell et al., 2010), the value of

ecosystem services (Dutton et al., 2010) and impacts from

invasive Acacia species (Van Wilgen et al., 2008). This can help

to prioritize areas for restoration, which will yield the greatest

return on investment and where stakeholders have higher

incentives and willingness to support restoration (Appen-

dix S1; Chen et al., 2010). Incentives for restoration can be

increased within organized stakeholder groups through effec-

tive communication about how ecosystem services are affected

by Acacia species (Briggs, 2001; Aronson et al., 2010) and by

providing alternative restoration options that result in similar

landscape functions (Opdam et al., 2006). This will require

restoration practitioners to demonstrate much more effectively

and quantitatively how their work results in the restoration of

ecosystem services (Aronson et al., 2010).

CONCLUSIONS

Millions of dollars are invested in the control of invasive alien

species worldwide, including Australian acacias, and this

expenditure will increase in the future. Many control efforts

simply aim to remove the invader, giving insufficient consid-

eration to the impacts of invasion and the longer-term

outcomes of the control efforts. In many cases, the original

invader may reinvade or a new species may invade the area. A

thorough understanding of the factors driving the invasion and

the changes in the biotic and abiotic components of the

Box 4 Priorities for research

1. Cross-continental research on invasions by Acacia species in analogous systems to identify and confirm commonalities and differences in the

impacts and ecosystem responses, and to develop an understanding of their relationships to the driving factors behind the impacts.

2. Similar cross-continental comparisons of autogenic recovery following Acacia removal (at each stage in the invasion process). This research

should aim to identify thresholds to autogenic recovery in different native ecosystems, and their links with transitions to alternative states, and

relate them to ecosystem traits and drivers to provide an evidence base for restoration strategies and actions.

3. Effective ways to deal with the massive, long-lived seed bank and mass regeneration potential of acacia species, while facilitating native species

recovery, and for managing raised soil nitrogen and accumulated litter.

4. Developing innovative management approaches and linked research to promote the restoration of resilient, multifunctional landscapes where

invasive Australian Acacia species have created novel but ecologically and socially undesirable states (see Seastedt et al., 2008).

5. Research into effective ways of actively involving society (individuals to institutions) in controlling invasive species and restoring ecosystems to

conserve biodiversity, rebuilding functioning ecosystems and maintaining ecosystem services.

D. C. Le Maitre et al.

1024 Diversity and Distributions, 17, 1015–1029, ª 2011 Blackwell Publishing Ltd



ecosystem can be used to direct control and restoration efforts.

Insights into the potential thresholds, and the alternative

ecosystem states that occur, can assist restoration practitioners

in determining whether autogenic recovery is likely or whether

active restoration is required. Successful restoration also relies

on a sound understanding of social and ecological consider-

ations.

We have used invasions by Australian acacias to demon-

strate how invasion ecology and restoration ecology research

can be combined to guide control and restoration. Research

across three continents has found evidence that suggests that a

key threshold is the state of the seed banks of native species.

The importance of increases in soil nutrients varies between

studies [e.g. crucial in the South African example (Box 1), but

relatively unimportant in the Portuguese example (Box 2)],

and high nutrient levels have been shown to sometimes

facilitate reinvasion or secondary invasions. Fires can play a

critical role where invasion radically increases fuel loads and

can result in severe fires that damage soils, kill native

resprouting species and deplete seed banks, thus inhibiting

autogenic recovery.

Controlling invasive alien plants is generally very costly and

requires sustained investment over long periods of time,

particularly when dealing with species that have very large and

long-lived seed banks, like many acacias. Active restoration

adds additional expenses but can be effective in reducing the

long-term costs of follow-up and maintenance operations.

Biological control can also be an effective way of reducing the

costs of control, restoration and follow-up operations (Wilson

et al., 2011). Such investments can only be justified when

rigorous studies provide sound evidence that will assure

stakeholders that the benefits of restoration outweigh the

costs. Conflicts of interest are difficult and complex to resolve

(Kull et al., 2011), but a thorough assessment of the full

socio-economic and environmental costs and benefits can be

the catalyst for solutions that satisfy the majority of

stakeholders (Van Wilgen et al., 2011). Authorities need to

put policies, legislation and incentives in place to guide public

and private investment in controlling invasive alien plant

species and combine this with passive or active restoration as

required. Ultimately, the responsibility for progress in this

area relies on invasion ecologists, managers of control

operations and restoration practitioners finding ways to work

together, learn from each other and put that knowledge into

practice.
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Pyšek, P. & Richardson, D.M. (2010) Invasive species, envi-

ronmental change and management, and ecosystem health.

Annual Review of Environment and Resources, 35, 25–55.

Rascher, K., Große-Stoltenberg, A., Máguas, C., Meira-Neto,
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itas, H. (2009) Belowground mutualists and the invasive

ability of Acacia longifolia in coastal dunes of Portugal.

Biological Invasions, 11, 651–661.

Scott, D.F., Versfeld, D.B. & Lesch, W. (1998) Erosion and

sediment yields in relation to afforestation and fire in the

mountains of the Western Cape province, South Africa.

South African Geographical Journal, 80, 52–59.

Seastedt, T.R., Hobbs, R.J. & Suding, K.N. (2008) Management

of novel ecosystems: are novel approaches required? Frontiers

in Ecology and the Environment, 6, 547–553.

Shackleton, C.M., McGarry, D. & Fourie, S. (2007) Assessing

the effects of invasive alien species on rural livelihoods: case

examples and a framework from South Africa. Human

Ecology, 35, 113–127.

Suding, K.N., Gross, K.L. & Houseman, G.R. (2004) Alterna-

tive states and positive feedbacks in restoration ecology.

Trends in Ecology and Evolution, 19, 46–53.

Temperton, V.M. (2007) The recent double paradigm shift in

restoration ecology. Restoration Ecology, 15, 344–347.

Turpie, J.K., Marais, C. & Blignaut, J.N. (2008) The working

for water programme: evolution of a payments for ecosystem

services mechanism that addresses both poverty and eco-

system service delivery in South Africa. Ecological Economics,

65, 788–798.

D. C. Le Maitre et al.

1028 Diversity and Distributions, 17, 1015–1029, ª 2011 Blackwell Publishing Ltd



Van Wilgen, B.W. & Scott, D.F. (2001) Managing fires on the

Cape Peninsula, South Africa: dealing with the inevitable.

Journal of Mediterranean Ecology, 2, 197–208.

Van Wilgen, B.W., Reyers, B., Le Maitre, D.C., Richardson, D.M.

& Schonegevel, L. (2008) A biome-scale assessment of

the impact of invasive alien plants on ecosystem services in

South Africa. Journal of Environmental Management, 89, 336–

349.

Van Wilgen, B.W., Dyer, C., Hoffmann, J.H., Ivey, P., Le

Maitre, D.C., Richardson, D.M., Rouget, M., Wannenburgh,

A. & Wilson, J.R.U. (2011) National-scale strategic

approaches for managing introduced plants: insights from

Australian acacias in South Africa. Diversity and Distribu-

tions, 17, 1060–1075.
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