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Abstract
Aim: Although	 species	distribution	models	 (SDMs)	 traditionally	 link	 species	occur‐
rences	to	free‐air	temperature	data	at	coarse	spatio‐temporal	resolution,	the	distri‐
bution	of	organisms	might	instead	be	driven	by	temperatures	more	proximal	to	their	
habitats.	Several	solutions	are	currently	available,	such	as	downscaled	or	interpolated	
coarse‐grained	free‐air	temperatures,	satellite‐measured	land	surface	temperatures	
(LST)	or	 in‐situ‐measured	soil	 temperatures.	A	comprehensive	comparison	of	 tem‐
perature	data	sources	and	their	performance	in	SDMs	is,	however,	currently	lacking.
Location: Northern	Scandinavia.
Time period: 1970–2017.
Major taxa studied: Higher	plants.
Methods: We	evaluated	different	sources	of	temperature	data	(WorldClim,	CHELSA,	
MODIS,	E‐OBS,	topoclimate	and	soil	temperature	from	miniature	data	loggers),	dif‐
fering	in	spatial	resolution	(from	1″	to	0.1°),	measurement	focus	(free‐air,	ground‐sur‐
face	or	soil	temperature)	and	temporal	extent	(year‐long	versus	long‐term	averages),	
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1  | INTRODUC TION

Species	 distribution	 models	 (SDMs)	 are	 widely	 used	 to	 describe	
and	 forecast	 the	 spatial	distribution	of	 species	 (Elith	&	Leathwick,	
2009).	 Species	 distribution	models	 relate	 species	 occurrence	 data	
to information about the environmental conditions at these loca‐
tions	 (Elith	&	 Leathwick,	 2009;	Guisan	&	 Thuiller,	 2007;	 Jiménez‐
Valverde	et	al.,	2011).	The	most	common	strategy	 is	 to	work	with	
long‐term	 (e.g.,	 30	 years)	 interpolated	 averages	 of	 a	 set	 of	 biocli‐
matic	variables	at	30″	 resolution	 (c.	1	×	1	km	at	 the	equator;	e.g.,	
WorldClim	or	CHELSA;	Gonzalez‐Moreno,	Diez,	Richardson,	&	Vila,	
2015;	Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005;	Karger	et	al.,	
2017;	Sears,	Raskin,	&	Angilletta,	2011;	Slavich,	Warton,	Ashcroft,	
Gollan,	&	Ramp,	2014;	Warren,	Glor,	&	Turelli,	2008).	Although	such	
macroclimate	 data	 might	 be	 sufficient	 to	 capture	 the	 conditions	
on	 flat	 terrain,	 many	 environments	 host	 a	 heterogeneous	 topog‐
raphy	(e.g.,	across	steep	elevational	gradients	 in	mountain	regions)	
that	makes	the	microclimate	near	the	ground	vary	noticeably	over	
short	distances	(Gottfried,	Pauli,	Reiter,	&	Grabherr,	1999;	Holden,	
Abatzoglou,	 Luce,	&	Baggett,	2011;	Opedal,	Armbruster,	&	Graae,	
2015;	Scherrer	&	Körner,	2011;	Sears	et	al.,	2011;	Stewart,	Simonsen,	
Svenning,	Schmidt,	&	Pellissier,	2018).	In	order	to	make	realistic	fore‐
casts	of	species	distributions	and	distribution	shifts	in	such	hetero‐
geneous environments, it has been suggested that climate data at 
finer	 spatio‐temporal	 resolutions	 are	 needed	 (Graae	 et	 al.,	 2012,	
2018;	 Illan,	Gutierrez,	&	Wilson,	2010;	Lenoir	et	al.,	2013;	Opedal	
et	al.,	2015;	Scherrer	&	Körner,	2011).	Such	new	climate	datasets,	
including	 in‐situ	 logging	 and	 remote	 sensing,	 are	now	 increasingly	
becoming	available	(Bramer	et	al.,	2018).	Nonetheless,	an	evaluation	

of	their	performance	in	SDMs	is	necessary	to	provide	guidance	for	
future	 studies;	 in	 particular,	 for	 those	predicting	 the	 responses	of	
species	to	climate	change	(Stewart	et	al.,	2018).

In	 the	 high‐latitude	 and	 high‐elevation	 areas	 of	 northern	
Europe,	 local	 temperatures	 have	 been	 found	 to	 vary	 up	 to	 6°C	
within	1	km2	spatial	units,	reflecting	the	 local	topography	(Lenoir	
et	al.,	2013).	This	high	temperature	variation	depends,	for	instance,	
on	 the	 interaction	 between	 temperature	 and	 snow	 distribution	
and, consequently, affects the length of the local growing season 
(Aalto,	 Scherrer,	 Lenoir,	 Guisan,	 &	 Luoto,	 2018;	 Körner,	 2003).	
Local	temperatures	also	vary	greatly	between	seasons,	and	short‐
term extreme weather conditions have been shown to be more 
relevant	for	species	distributions	than	the	average	climatic	condi‐
tions	(Ashcroft	&	Gollan,	2012).	Including	this	variation	in	SDMs	is	
likely	to	be	crucial,	for	instance	in	the	context	of	stepping	stones,	
holdouts	 or	microrefugia	 (Dobrowski,	 2011;	Meineri	&	Hylander,	
2017;	Opedal	et	al.,	2015).	Stepping	stones	refer	to	areas	with	mi‐
croclimates	that	facilitate	shifts	in	species	ranges	(e.g.,	upward	or	
poleward	movement	during	climate	change	or	after	non‐native	spe‐
cies	 introductions;	Hannah	et	al.,	2014;	Lembrechts,	et	al.,	2018;	
Pauchard	et	al.,	2009).	Holdouts	and	microrefugia,	in	contrast,	are	
areas	with	a	relatively	stable	microclimate	where	isolated	popula‐
tions	can	persist	for	a	certain	time	(Ashcroft,	2010;	Hannah	et	al.,	
2014;	Lenoir,	Hattab,	&	Pierre,	2017;	Meineri	&	Hylander,	2017).	
Climatic variability within an area can indeed considerably buffer 
effects	of	climate	warming	(Lenoir	et	al.,	2013,	2017),	which	often	
remain	undetected	using	macroclimate	data,	possibly	leading	to	the	
overestimation	of	rates	of	extinction	and	range	expansion	(Willis	&	
Bhagwat,	2009).

and	 used	 them	 to	 fit	 SDMs	 for	 50	 plant	 species	with	 different	 growth	 forms	 in	 a	
high‐latitudinal	mountain	region.
Results: Differences	between	these	temperature	data	sources	originating	from	meas‐
urement	focus	and	temporal	extent	overshadow	the	effects	of	temporal	climatic	dif‐
ferences	 and	 spatio‐temporal	 resolution,	with	 elevational	 lapse	 rates	 ranging	 from	
−0.6°C	per	100	m	for	long‐term	free‐air	temperature	data	to	−0.2°C	per	100	m	for	
in‐situ	soil	 temperatures.	Most	 importantly,	we	found	that	 the	performance	of	 the	
temperature	data	 in	 SDMs	depended	on	 the	 growth	 forms	of	 species.	 The	use	of	
in‐situ	soil	temperatures	improved	the	explanatory	power	of	our	SDMs	(R2 on aver‐
age	+16%),	especially	for	forbs	and	graminoids	(R2	+24	and	+21%	on	average,	respec‐
tively)	compared	with	the	other	data	sources.
Main conclusions: We	suggest	that	future	studies	using	SDMs	should	use	the	tem‐
perature	dataset	that	best	reflects	the	ecology	of	the	species,	rather	than	automati‐
cally	using	coarse‐grained	data	from	WorldClim	or	CHELSA.

K E Y W O R D S

bioclimatic	envelope	modelling,	bioclimatic	variables,	climate	change,	growth	forms,	land	
surface	temperature,	microclimate,	mountains,	soil	temperature,	species	distribution	
modelling
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Moreover,	 many	 organisms	 (particularly	 small‐stature	 plants,	
certain	types	of	insects	and	soil	microbes)	experience	temperatures	
at	ground	or	sub‐surface	level,	which	can	differ	greatly	from	ambient	
air	temperatures	that	are	usually	measured	at	2	m	above	the	soil	sur‐
face	(Aalto	et	al.,	2018;	Körner	&	Hiltbrunner,	2018;	Poorter	et	al.,	
2016).	Especially	 in	high‐latitude	and	high‐elevation	 regions,	 snow	
cover,	for	example,	acts	as	an	insulator,	thereby	strongly	decoupling	
soil	 and	 air	 temperatures	 (Pauli,	 Zuckerberg,	Whiteman,	&	 Porter,	
2013;	Poorter	et	al.,	2016;	Thompson,	Zuckerberg,	Porter,	&	Pauli,	
2018),	and	biophysical	processes	owing	to	vegetation	cover	may	also	
decouple	upper	atmospheric	conditions	from	boundary	layer	condi‐
tions	(Geiger,	1950).

In	order	to	overcome	this	spatio‐temporal	mismatch	between	cli‐
mate	data	and	species	ecology	and	to	improve	predictions	of	species’	
current	and	future	distributions,	four	main	approaches	are	commonly	
used:	(a)	to	downscale	existing	coarse‐grained	(i.e.,	1,000	×	1,000	m	
resolution)	climate	data	(McCullough	et	al.,	2016);	(b)	to	interpolate	
climate	 station	 data	 (Aalto,	 Riihimäki,	Meineri,	Hylander,	&	 Luoto,	
2017); (c) to gather local climate data through field measurements 
(Lenoir	 et	 al.,	 2017;	 Potter,	Woods,	 &	 Pincebourde,	 2013;	 Slavich	 
et al., 2014); or (d) to monitor climatic conditions continuously in 
space	and	time	through	remote	sensing	technologies	(e.g.,	satellite‐ 
measured	 land	 surface	 temperatures;	 Metz,	 Rocchini,	 &	 Neteler,	
2014;	Wan,	2008).

In	 the	 first	 two	 approaches,	 a	 high	 spatial	 resolution	 can	 be	
obtained	 using	 topographic	 variables	 derived	 from	 digital	 eleva‐
tion	models,	which	are	available	at	much	finer	resolutions	(e.g.,	1″,	
which is c.	30	×	30	m	at	the	equator).	Such	downscaled	or	interpo‐
lated	climate	data	have	been	found	to	be	a	significant	improvement	
over	 macroclimatic	 variables	 for	 modelling	 species	 distributions	
(Dobrowski,	2011;	Meineri	&	Hylander,	2017;	Randin,	Engler,	et	al.,	
2009; Slavich et al., 2014).

In	the	third	approach,	one	uses	in‐situ	measurements	to	provide	
fine‐grained	 climatic	 conditions	with	 high	 spatial	 accuracy	 (micro‐
climate)	(Meineri	&	Hylander,	2017;	Opedal	et	al.,	2015).	Such	field	
measurements	can	also	be	interpolated	to	the	 level	of	regional	cli‐
mate	using	topographical	information	(Ashcroft,	Chisholm,	&	French,	
2008;	Greiser,	Meineri,	Luoto,	Ehrlén,	&	Hylander,	2018;	Maclean,	
Suggitt,	 Wilson,	 Duffy,	 &	 Bennie,	 2017),	 yet	 usually	 cover	 short	
temporal	and	small	geographical	extents	only.	 In	addition	to	a	fine	
spatial	resolution,	in‐situ	measurements	provide	the	opportunity	to	
adapt	the	measurement	focus	to	the	ecology	or	life‐form	of	the	spe‐
cies	(e.g.,	by	measuring	near‐surface	soil	temperature	instead	of	air	
temperature).	Gathering	in‐situ	temperature	data,	however,	requires	
considerably	more	resources	than	the	previously	mentioned	down‐
scaling	approaches	(Meineri	&	Hylander,	2017;	Opedal	et	al.,	2015).	
Increasing	 the	 spatio‐temporal	 resolution	 and	extent	 of	 such	 field	
measurements	generally	 refines	 the	predictions,	but	also	presents	
a	logistical	challenge	(Meineri	&	Hylander,	2017;	Wundram,	Pape,	&	
Loffler, 2010).

Finally,	the	fourth	approach	(i.e.,	using	remotely	sensed	data)	
is	 now	more	 frequently	 used	 in	 SDMs	 (Pottier	 et	 al.,	 2014),	 for	
instance through remotely sensed snow cover data or by using 

the	normalized	difference	vegetation	 index	(NDVI)	 (Yannic	et	al.,	
2014). One such remotely sensed source of data, for which the 
spatio‐temporal	resolution,	extent	and	accuracy	is	rapidly	improv‐
ing,	is	satellite‐based	land	surface	temperatures	(LSTs;	Wan,	2008;	
Wan	et	al.,	2015).	Remotely	sensed	LSTs	are	now	freely	available	
at	the	global	scale	at	the	vegetation	canopy	or	land	surface	level,	
with	a	temporal	 resolution	of	days	over	a	period	of	decades	and	
with	 a	 spatial	 resolution	 ranging	 from	 30″	 (c. 1,000 × 1,000 m 
at	the	equator)	 to	as	fine	as	1″	 (c.	30	×	30	m)	 (Cook,	2014).	This	
type	of	data	does	have	 the	advantage	over	 free‐air	 temperature	
datasets,	 such	 as	WorldClim	 or	 CHELSA,	 of	 being	 a	 direct	 and	
contiguous	measurement	 in	 space	 and	 time,	 as	 opposed	 to	 data	
interpolation	and	temporal	averaging	from	a	network	of	weather	
stations, yet might be affected strongly by land surface character‐
istics	and	cloud	cover	in	the	area	(Zellweger	et	al.,	2019).	Thanks	
to	the	increasing	availability	of	these	long‐term	and	accurate	time	
series,	such	satellite‐based	LST	datasets	offer	very	promising	re‐
search	avenues	to	fill	the	gap	between	local	temperature	measure‐
ments	and	global‐scale	climatic	datasets.

These	different	approaches	to	obtain	suitable	climate	data	have	
been	extensively	explored	and	applied	in	SDMs	(Bramer	et	al.,	2018),	
yet	a	comparative	study	of	all	of	these	(downscaled	and	interpolated	
macroclimate	data,	field	measurements	and	satellite‐based	LST)	to‐
gether, concerning both their inherent characteristics and their role 
in	SDMs,	has	been	missing	until	now.	Such	a	comparison	is	neverthe‐
less	needed	urgently	 in	order	to	quantify	the	progress	that	can	be	
made	by	replacing	the	traditional	global	climate	models	with	other	
temperature	data	sources.	We	hypothesize	 in	 that	 regard	 that	 the	
best	 result	 depends	mainly	on	 two	critical	 factors:	 (a)	 the	 climatic	
characteristics of the study region; and (b) the growth forms of the 
study organisms.

Here,	we	use	a	case	study	along	steep	climatic	gradients	in	the	
Northern	Scandes,	a	mountain	range	 in	northern	Scandinavia,	to	
assess	both	factors	and	to	provide	guidelines	for	the	use	of	tem‐
perature	 data	 in	 SDMs	 in	 topographically	 challenging	 regions.	
We	 compare	 the	 characteristics	 of	 different	 temperature	 data‐
sets	within	 the	 region,	 in	addition	 to	 the	descriptive	and	predic‐
tive	 power	 of	 SDMs	 for	 50	 plant	 species	 with	 different	 growth	
forms:	 forbs,	 graminoids,	 (dwarf)	 shrubs	 and	 trees.	We	 compare	
global	 climate	 datasets	 (i.e.,	WorldClim	 and	CHELSA)	with	 data‐
sets	of	remotely	sensed	LSTs	(MODIS),	a	topographic	downscaling	
and	 interpolation	 approach,	 and	 soil	 temperature	 obtained	with	
miniature	data	loggers,	and	use	three	widely	applied	and	ecolog‐
ically	 relevant	 (i.e.,	 bioclimatic)	 temperature	 variables:	mean	 an‐
nual	temperature,	and	mean	temperature	of	the	warmest	and	the	
coldest	quarter.	We	hypothesize	a	significant	effect	of	the	spatial	
resolution	 of	 the	 climate	 data	 and	 of	 measurement	 focus	 (free‐
air,	surface	or	soil)	and	temporal	extent	on	temperature	patterns	
across	topographic	gradients.	Increasing	spatio‐temporal	accuracy	
of	 temperature	 data,	 especially	 through	 the	 use	 of	 in‐situ	mea‐
surements,	is	expected	to	improve	the	descriptive	and	predictive	
power	of	the	SDMs,	despite	the	associated	reduction	in	temporal	
extent.	 The	 optimal	 resolution,	 extent	 and	 measurement	 focus	
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are,	 however,	 likely	 to	 depend	 on	 the	 growth	 forms	 of	 the	 as‐
sessed	species	(i.e.,	the	spatio‐temporal	framework	in	which	they	
operate).

2  | METHODS

2.1 | Study region

The	 study	 was	 conducted	 in	 the	 Northern	 Scandes	 moun‐
tain	 range	 in	 Norway	 and	 Sweden,	 between	 67°46′23.5″	 N,	
16°30′52.6″	 E	 (south‐west)	 and	 68°40′33.6″	 N,	 18°58′40.4″	 E	
(north‐east),	covering	an	area	of	100	×	100	km	and	an	elevation	
range	from	0	to	2,097	m	above	sea	 level	 (a.s.l.).	The	area	ranges	
from	the	Norwegian	coast,	with	a	relatively	mild	and	wet	climate	
dominated by birch forests with heathland understorey, to the sig‐
nificantly	drier	and	colder	eastern	side	of	the	Northern	Scandes,	
typically	 vegetated	 by	 subarctic,	 alpine	 dwarf	 shrub	 vegetation	
(Lembrechts,	 Milbau,	 &	 Nijs,	 2014).	 The	 region	 was	 chosen	 for	
its	 strong	 climatic	 gradient,	with	 large	macro‐	 and	microclimatic	

variation	owing	to	a	distinct	topography	and	high‐latitude	location	
(Graae	et	al.,	2012;	Lenoir	et	al.,	2013;	Scherrer	&	Körner,	2011).	In	
total,	106	temperature	measurement	locations	were	spread	across	
the	study	area	(Figure	1).

2.2 | Climate data

For	 this	 area,	we	 obtained	 eight	 different	 types	 of	 climate	 data	
encompassing	 a	wide	 range	of	measurement	 foci,	 spatio‐tempo‐
ral	 resolutions	and	temporal	extents	 (Table	1).	For	each	of	these	
datasets,	we	extracted	or	calculated	the	mean	annual	temperature	
and	mean	temperature	of	 the	warmest	and	coldest	quarter	 [bio‐
climatic	variables	Bio1,	Bio10	and	Bio11,	 following	the	definition	
of	WorldClim	(Hijmans	et	al.,	2005),	hereafter	called	mean	annual,	
summer	and	winter	temperature,	respectively].	These	ecologically	
relevant	 variables	 belong	 to	 the	 set	 of	 physiologically	most	 per‐
tinent	 bioclimatic	 determinants	 of	 spatial	 plant	 species	 distribu‐
tion	and	are	thus	commonly	used	in	SDMs	(e.g.,	Austin	&	Van	Niel,	
2011;	Cord	&	Rödder,	2011;	Distler,	Schuetz,	Velásquez‐Tibatá,	&	

F I G U R E  1  Study	area	and	measurement	locations.	Location	of	the	study	area	in	Scandinavia	(left)	and	digital	elevation	model	(DEM)	
at 1'' resolution  (c.	30	×	30	m	at	the	equator)	across	the	study	area	(right).	Dots	on	the	DEM	show	locations	of	the	106	soil	temperature	
measurements.	Species	data	sampling	was	done	in	the	locations	marked	with	blue	dots	(a,b).	See	Table	2	for	datasets	(blue	=	1;	orange	=	2;	
green	=	3;	red	=	4).	Elevational	gradients	range	from	0	to	700	m	a.s.l.	(a,b)	and	from	400	to	1,200	m	a.s.l.	(c)
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Langham,	2015),	and	they	allow	us	to	take	into	account	seasonal	
differences	 in	 climate	 accurately.	The	different	datasets	 are	dis‐
cussed in detail below.

2.2.1 | WorldClim

The	WorldClim	database	(v.2.0)	provides	globally	interpolated	free‐
air	temperature	conditions	over	a	30‐year	time	period	(1970–2000)	
at	a	spatial	resolution	of	30″	(c.	1,000	×	1,000	m	at	the	equator)	(Fick	
&	 Hijmans,	 2017).	 The	 studied	 bioclimatic	 variables	 were	 directly	
downloaded from the website (www.world clim.org).

2.2.2 | CHELSA

The	climatologies	at	high	resolution	for	the	earth's	land	surface	areas	
(CHELSA,	v.1.2)	is	a	global	dataset	based	on	quasi‐mechanistical	sta‐
tistical	downscaling	of	free‐air	temperatures	from	the	ERA	Interim	
(ECMWF)	global	circulation	model	(Dee	et	al.,	2011),	over	a	period	
of	 34	 years	 (1979–2013)	 and	 with	 the	 same	 spatial	 resolution	 as	
WorldClim	(30″,	c. 1,000 × 1,000 m at the equator), yet for a more 
recent	time	period	 (Karger	et	al.,	2017).	Bioclimatic	variables	were	
again	 downloaded	 directly	 from	 the	 website	 (www.chelsa‐clima	
te.org).

2.2.3 | Downscaled CHELSA data (hereafter called 
“downscaled”)

We	used	the	bioclimatic	variables	downloaded	from	CHELSA,	at	an	
original	resolution	of	30″	(c.  1,000 × 1,000 m at the equator), and 
downscaled	them	statistically	even	further,	to	a	1″	(c.	30	×	30	m	at	
the	equator)	resolution	based	on	topographic	variation,	using	a	phys‐
iographically	informed	model	fitted	with	a	geographically	weighted	
regression	(GWR)	technique	(Fotheringham,	Brunsdon,	&	Charlton,	
2003).	 In	 short,	GWR	extends	 the	 traditional	 regression	approach	
by	allowing	estimated	regression	parameters	to	vary	across	space.	
Therefore,	 GWR	 models	 are	 particularly	 relevant	 for	 exploration	
of	 the	 scale‐dependent	 and	 spatial	 non‐stationary	 relationships	
between	 free‐air	 temperatures	 and	 physiographic	 variables	 (here:	
elevation,	 slope,	 eastness,	 northness,	 distance	 to	 the	 ocean	 and	

clear‐sky	solar	radiation)	(Su,	Foody,	&	Cheng,	2012).	For	more	de‐
tails,	see	Supporting	Information	Appendix	S1.

2.2.4 | Topoclimate

Fine‐resolution	gridded	climate	data	 for	 the	 region	were	obtained	
from	Aalto	et	al.	(2017),	who	included	topography‐driven	small‐scale	
climate	 heterogeneity	 in	 a	 topoclimatic	 interpolation	 of	 weather	
station	 data	 across	 northern	 Scandinavia,	 using	 generalized	 addi‐
tive	modelling	at	 a	 resolution	of	1″	 (c.	 30	×	30	m	at	 the	equator).	
They	modelled	monthly	average	temperatures	from	1981	until	2010	
using	geographical	 location,	 elevation,	water	 cover,	 solar	 radiation	
and	cold‐air	pooling.	Bioclimatic	variables	were	calculated	based	on	
these monthly averages.

2.2.5 | MODIS LST

The	moderate	 resolution	 imaging	 spectroradiometer	 (MODIS)	 sat‐
ellite	TERRA	(Wan	et	al.,	2015)	from	the	National	Aeronautics	and	
Space	Administration	(USA)	provides	global	LST.	We	extracted	data	
from	MOD11A2:	 8‐day	 averages	 based	on	 the	 clear	 sky	 day‐	 and	
night‐time	records	at	a	30″	(c. 1,000 × 1,000 m at the equator) reso‐
lution,	for	a	period	of	2	years	corresponding	to	the	in‐situ	measure‐
ments	 (from	August	 2015	 to	 July	 2017;	 see	 below).	Mean	 annual	
temperature	was	calculated	in	ArcGIS	by	averaging	the	temperature	
per	pixel	for	2015–2016	and	2016–2017,	separately,	from	day	of	the	
year	 (DOY)	209	 in	year	n	 (e.g.,	 27	 July	2015)	 to	DOY	208	 in	year	
n	+	1	(e.g.,	26	July	2016),	which	was	the	set	of	8‐day	averages	corre‐
sponding	most	closely	to	the	period	used	for	the	in‐situ	temperature	
measurements	described	below	(see	sub‐section	below	on	Soil	tem‐
peratures).	Mean	summer	and	winter	temperatures	were	calculated	
in	a	similar	manner,	but	for	DOY	185	(e.g.,	3	July	2015)	to	272	(28	
September	2015)	and	from	DOY	1	(e.g.,	1	January	2016)	to	88	(28	
March	2016),	respectively.

2.2.6 | EuroLST

The	EuroLST	dataset	is	a	gap‐filled	dataset	at	the	European	scale	of	
LST	derived	from	MODIS	(see	the	sub‐section	above	on	MODIS	LST)	

TA B L E  1  The	eight	climate	datasets	studied	and	their	geographical	and	temporal	extent,	spatial	resolution	and	measurement	focus

Dataset Initial source Geographical extent Spatial resolution Measurement focus Temporal coverage

WorldClim WorldClim Global 30″ Free‐air 1970–2000

CHELSA CHELSA Global 30″ Free‐air 1979–2013

Downscaled CHELSA 10,000	km2 1″ Free‐air 1979–2013

Topoclimate Aalto et al. 
(2017)

10,000	km2 1″ Free‐air 1981–2010

MODIS	LST MODIS Global 30″ Surface 2015–2017

EuroLST MODIS Europe c.	7.5″ Surface 2001–2011

E‐OBS E‐OBS Europe 0.1° Free‐air 2015–2017

Soil	temperature iButtons 10,000	km2 1″ Soil 2015–2017

http://www.worldclim.org
http://www.chelsa-climate.org
http://www.chelsa-climate.org
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at	a	spatial	resolution	of	250	×	250	m	and	averaged	over	a	temporal	
extent	of	10	years	(Metz	et	al.,	2014).	This	dataset	has	been	created	
using	a	combination	of	weighted	temporal	averaging	with	statistical	
modelling	and	spatial	interpolation	to	fill	in	the	gaps	in	the	MODIS	LST	
dataset	and	to	improve	its	spatial	resolution.	Relevant	bioclimatic	vari‐
ables were downloaded directly from the website (courses.neteler.
org/eurolst‐seamless‐gap‐free‐daily‐european‐maps‐land‐surface‐
temperatures).

2.2.7 | E‐OBS

The	 E‐OBS	 dataset	 (v.17.0)	 provides	 daily	 gridded	 climate	 data	 of	
free‐air	temperature	for	Europe	at	a	0.1°	(c. 10,000 × 10,000 m at 
the	equator)	spatial	 resolution,	 interpolated	from	weather	stations	
(Haylock	et	al.,	2008),	used	here	over	the	study	period	from	August	
2015	to	July	2017	(as	in	the	subsection	on	MODIS	LST).	The	gridded	
dataset	is	created	by	first	interpolating	the	monthly	mean	tempera‐
ture	 from	 the	weather	 stations	 using	 three‐dimensional	 thin‐plate	
splines,	interpolating	the	daily	anomalies	using	a	spatial	kriging	ap‐
proach	with	an	external	drift	for	temperature,	and	then	combining	
these	monthly	and	daily	estimates.	Temperature	data	were	down‐
loaded	directly	from	the	website	(https	://www.ecad.eu/downl	oad/
ensem	bles/downl	oad.php)	 and	 subsequently	 used	 to	 generate	 the	
three studied bioclimatic variables in R.

2.2.8 | Soil temperatures

Near‐surface	soil	temperatures	were	logged	every	1.5	or	2	h	(iBut‐
tons:	DS1922L	or	DS1921G,	with	an	accuracy	of	0.5°C,	www.maxim	
integ	rated.com,	San	 José,	CA,	USA)	at	 a	depth	of	3	cm	below	 the	
soil surface in 106 locations along several elevational gradients in 
Norway	and	Sweden	 (Figure	1;	Table	2).	Loggers	were	wrapped	 in	
parafilm	and	put	in	a	small	zipper	bag	to	prevent	water	damage.	The	
loggers	 were	 originally	 established	 for	 several	 different	 projects	
(Lembrechts et al., 2018, 2014, 2016) along seven elevational gradi‐
ents, together ranging from 0 to 1,200 m a.s.l., of which three were 
in	Norway	and	four	in	Sweden.	The	three	bioclimatic	variables	were	
calculated	in	R	(R	Core	Team,	2015)	for	each	106	locations	and	for	

each	year	(from	2015	to	2017,	corresponding	to	the	periods	used	in	
the	sub‐section	above	on	MODIS	LST)	from	daily	averages.	Based	
on	these	soil	temperature	data,	we	made	predictions	for	each	bio‐
climatic	variable	for	the	whole	study	area	of	100	×	100	km	for	the	
period	from	August	2016	to	July	2017	using	GWRs	(as	in	the	sub‐sec‐
tion	above	featuring	the	downscaling	approach)	based	on	the	same	
physiographic	 variables	 (i.e.,	 elevation,	 slope,	 eastness,	 northness,	
distance	to	the	ocean	and	clear‐sky	solar	radiation).	The	models	were	
used	to	predict	the	bioclimatic	variables	for	every	1″	(c.	30	×	30	m	at	
the	equator)	pixel	in	the	study	area.	For	more	details	on	the	interpo‐
lation	approach,	see	Supporting	Information	Appendix	S1.

2.3 | Plant species observations

Plant	species	data	were	obtained	during	summer	2017	in	the	frame‐
work	of	the	Mountain	Invasion	Research	Network	(www.mount	ainin	
vasio	ns.org)	 long‐term	monitoring	 effort,	 and	 specifically	 as	 a	 fol‐
low‐up	to	the	survey	of	Lembrechts	et	al.	(2014)	in	the	Norwegian	
study	 plots	 (59	 out	 of	 the	 106	 plots	with	 in‐situ	 soil	 temperature	
measurements;	 see	 Figure	 1;	 Table	 2).	 Within	 the	 framework	 of	
this	survey,	three	elevational	gradients	were	selected	(spanning	on	
average	700	m	 in	elevation).	The	elevation	 range	covered	by	each	
gradient	 was	 divided	 into	 19	 equally	 spaced	 elevation	 bands,	 re‐
sulting	 in	 20	 sampling	 sites	 per	 gradient.	 At	 each	 elevation,	 pres‐
ence/absence	of	all	vascular	plant	species	was	recorded	in	plots	of	
2	×	50	m	in	natural	vegetation.	At	one	end	of	each	of	these	plots,	
the	temperature	logger	(see	dataset	described	in	the	sub‐section	on	
Soil	temperatures	above)	was	buried.	We	used	data	for	the	50	most	
common	plant	species	in	the	survey	(i.e.,	≥10	occurrences).	Species	
were	grouped	based	on	their	growth	forms	(Supporting	Information	
Table	S1):	forbs	(n	=	25);	graminoids	(n	=	7);	dwarf	shrubs	(n	=	15);	and	
trees (n	=	3).	All	species	were	native	to	the	region.

2.4 | Direct comparison of climatic variables

2.4.1 | Relationship to elevation

To	assess	differences	in	the	behaviour	of	the	eight	climate	datasets	
along an elevational gradient, the three bioclimatic variables derived 

TA B L E  2  Overview	of	in‐situ	soil	temperature	measurement	plots	in	Sweden	and	Norway	(n	=	106)

Region
Number of 
gradients Number of sites Number of plots Surface area Temporal extent

Elevation  
(m a.s.l.) Species data

1.	Norway 3 59 59 2 × 100 m 1	August	2015	to	
31	July	2017

0–700 Yes

2. Sweden 2 4 23 0.6 × 1.2 m 1	August	2015	to	
31	July	2016

900–1,100 No

3.	Sweden 2 6 11 0.6 × 1.2 m 1	August	2015	to	
31	July	2017

400–900 No

4. Sweden 2 13 13 2 × 10 m 1	August	2015	to	
31	July	2017

400–1,200 No

Note.	For	each	region	(numbered	from	1	to	4;	refer	to	the	map	in	Figure	1),	we	present	the	number	of	elevational	gradients	(i.e.,	different	mountains	
monitored),	sites	and	plots	(with	more	plots	than	sites	indicating	repeated	temperature	measurements	in	a	<20	×	20	m	area),	in	addition	to	the	tem‐
poral	extent,	the	length	of	the	elevational	gradient,	and	whether	species	data	are	available	to	run	species	distribution	models	(SDMs).

https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
http://www.maximintegrated.com
http://www.maximintegrated.com
http://www.mountaininvasions.org
http://www.mountaininvasions.org
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from	 these	 climate	 datasets	 were	 plotted	 separately	 against	 the	
elevation	of	 the	106	 locations	of	 the	 in‐situ	 soil	 temperature	data	
loggers.	For	the	gridded	climate	datasets,	we	extracted	a	value	for	
each	bioclimatic	variable	for	each	 location.	We	used	 linear	models	
(function lm	in	R;	R	Core	Team,	2015)	to	assess	the	lapse	rate	(i.e.,	the	
slope,	in	degrees	Celsius	per	100	m)	of	decrease	in	temperature	with	
elevation.	For	MODIS	LST,	E‐OBS	and	the	soil	 temperature	meas‐
urements,	data	were	plotted	and	modelled	 separately	 for	 the	 two	
study	years	(2015–2016	and	2016–2017).

2.4.2 | Paired comparisons

For	each	of	the	106	studied	locations,	we	compared	the	values	for	
each climatic dataset (and each of the three bioclimatic variables) 
against	the	others,	to	investigate	consistent	temperature	deviations	
between	 datasets.	 Trends	 for	 each	 bioclimatic	 variable	 and	 each	
dataset	were	visualized	with	general	additive	models	 (GAMs),	with	
a	cubic	regression	line	and	without	a	pre‐set	smoothing	value	(func‐
tion gam,	R	package	mgcv;	Wood,	2006),	 following	procedures	de‐
scribed	by	Zuur,	 Ieno,	Walker,	Saveliev,	and	Smith	 (2009).	General	
additive	models	were	used	because	we	did	not	want	to	make	restric‐
tive	assumptions	about	the	relationships	of	the	datasets	with	each	
other.

2.4.3 | Correlative dendrograms

For	all	106	locations,	we	made	correlative	dendrograms	(distance	=	1	
–ρ, where ρ	 is	 Pearson's	 product–moment	 correlation)	 to	 visualize	
correlations	 among	 and	 relationships	 between	 the	 different	 data‐
sets, using the function hclust	from	the	package	spatstat	(Baddeley,	
Rubak,	&	Turner,	2015).

2.4.4 | Regional climate predictions

We	generated	regional	maps	for	the	different	climate	datasets	(see	
the	Climate	data	section	and	Supporting	 Information	Appendix	S1	
for	more	 details	 on	 how	 the	maps	were	 generated	 for	 the	 in‐situ	
measurements),	and	calculated	for	each	pixel	the	absolute	tempera‐
ture	difference	between	 the	 respective	dataset	and	 the	 regionally	
modelled	soil	temperature	at	a	1″	(c.	30	×	30	m	at	the	equator)	spatial	
resolution.

2.4.5 | Temporal correction

For	 a	 more	 formal	 comparison	 between	 the	 datasets	 with	 differ‐
ent	 temporal	 windows,	 we	 calculated,	 for	 each	 climatic	 dataset,	
its	 difference	 from	 the	 “background	 climate”,	 taken	 as	 tempera‐
tures	 for	 the	window	 in	question	 from	 the	ERA	 Interim	 (ECMWF)	
2	m	free‐air	temperature	database	(Dee	et	al.,	2011).	This	is	a	time	
series of monthly means of daily means from 1979 to 2018 (hence 
covering	the	time	period	for	all	studied	datasets	except	WorldClim),	
for	 which	 we	 calculated	 average	 Bio1,	 Bio10	 and	 Bio11	 over	 the	
whole	100	×	100	km	study	area	(based	on	the	original	0.75°	×	0.75°	

resolution	grid).	We	then	re‐ran	the	paired	comparisons	(see	Paired	
comparisons	 section)	with	 the	 temperature	off‐set	 (i.e.,	 the	differ‐
ence between the bioclimatic value, for each observation and for 
each dataset, and the average bioclimatic value from ERA Interim 
for	the	corresponding	period),	using	Student’s	paired	t‐tests	to	test	
for	potential	differences,	such	as	differences	between	Bio1(soil	tem‐
perature(2016–2017))	 and	 Bio1(ERA	 Interim(2016–2017)) and between 
Bio1(CHELSA(1979–2013))	and	Bio1(ERA	Interim(1979–2013)).

Use	of	this	off‐set	of	temperatures	from	a	standardized	and	com‐
mon time series allowed us to correct, to some extent, for differ‐
ences	in	the	temporal	scope	among	the	climatic	datasets,	and	thus	
climate change and interannual weather variation. Although this 
does	 not	 take	 into	 account	 possible	 decoupling	 of	 climate	 change	
between	soil,	surface	and	air	temperature,	it	does	allow	the	estima‐
tion	of	the	size	of	the	temporal	effect	in	the	dataset,	and	thus	more	
precise	 quantification	 of	 the	 difference	 between	 in‐situ	 soil	 tem‐
perature	and	the	other	datasets.

2.5 | Species distribution modelling

The	 regional	 distribution	 of	 the	 50	 plant	 species	 was	 modelled	
using	 species‐specific	 generalized	 linear	 mixed‐effect	 models	
[GLMMs;	 function	glmer,	 package	 lme4	 (Bates,	Maechler,	 Bolker,	
&	 Walker,	 2015),	 family	 =	 binomial]	 as	 a	 function	 of	 mean	 an‐
nual,	summer	and	winter	temperature,	and	their	quadratic	terms.	
Gradient	(plant	data	were	available	from	three	different	elevational	
gradients;	Table	2)	was	used	as	a	random	intercept	term	in	these	
models	to	account	for	structural	variation	between	gradients.	This	
was	repeated	for	each	climate	dataset	(except	for	E‐OBS,	because	
owing to the limited climate variation measured within the region, 
species	 distributions	 could	 not	 be	modelled),	 resulting	 in	 a	 total	
of	350	SDMs	(50	species	×	seven	datasets).	For	both	MODIS	LST	
and	 soil	 temperature,	 only	 the	data	 from	 the	measurement	 year	
before	the	species	observations	(2016–2017)	were	used,	whereas	
the	bioclimatic	variables	from	2015–2016	were	highly	correlated	
with	 those	of	2016–2017	and	 thus	excluded.	The	variance	 infla‐
tion	factor	(VIF;	function	vif,	package	car;	Fox	&	Weisberg,	2011)	
was calculated for each of the climatic datasets to test the correla‐
tion	 between	 the	 different	 bioclimatic	 variables.	 Given	 that	 the	
VIF	 (a	value	between	zero	and	 infinity)	exceeded	five	 (indicating	
a	 strong	 correlation)	 for	 some	 datasets	 (specifically,	 those	 with	
long‐term	climatic	averages),	separate	models	including	only	Bio1	
as	explanatory	variables	were	made,	and	 results	were	compared	
between	both	approaches.

The	explained	variance	in	the	present	distribution	of	the	species	
(R2 of the fixed effect, i.e., the marginal R2;	Nakagawa	&	Schielzeth,	
2013)	was	then	calculated	for	each	model	and	compared	across	all	
species	between	the	different	datasets	with	an	ANOVA	and	Tukey’s	
HSD	post‐hoc	test	[differences	in	R2 between growth forms (factor 
with	four	levels),	model	assumptions	were	met].	We	also	compared	
the increase in R2	values	obtained	by	using	soil	temperature	versus	
the other climate datasets for the different growth forms (forbs, 
graminoids,	shrubs	and	trees)	separately.
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Finally,	we	assessed	the	predictive	power	of	the	different	SDMs	
using	 a	 leave‐one‐out	 method,	 each	 time	 calibrating	 the	 model	
with	 58	 data	 points	 (plots)	 and	 predicting	 for	 the	 remaining	 one.	
We	calculated	the	area	under	the	curve	(AUC)	of	the	receiver	op‐
eratiing characteristic (ROC), using the function performance from 
the	package	ROCR	(Sing,	Sander,	Beerenwinkel,	&	Lengauer,	2005),	
in	 addition	 to	 the	 sensitivity	 (presences	 correctly	 predicted	 as	
presences)	and	the	specificity	(absences	correctly	predicted	as	ab‐
sences)	metrics.	A	value	of	.5	was	used	to	binarize	predictions.	This	
was	 repeated	 for	 each	 species	 and	 for	 each	 climate	 dataset,	 and	
differences	in	AUC,	sensitivity	and	specificity	between	SDMs	using	
the	different	climatic	datasets	were	again	assessed	with	an	ANOVA	
and	a	post‐hoc	Tukey’s	HSD	test.	We	also	compared	the	increase	in	
AUC,	sensitivity	and	specificity	obtained	by	using	soil	temperature	
versus the other climate datasets for the different growth forms 
separately.	Note	 that	 this	predictive	approach	 is	 limited	 for	 three	
reasons.	First,	 the	restricted	dataset	size	 is	 likely	to	constrain	the	
predictive	power	of	the	models.	Second,	for	compartive	purposes,	
our	SDMs	are	only	calibrated	using	bioclimatic	predictors,	and	thus	
predictive	power	(as	estimated	here	using	AUC	values)	will	be	rel‐
atively	 low.	 Third,	when	 using	 predictive	modelling	 in	 small‐sized	
plots	(i.e.,	100	m2	here,	versus	1	km2	traditionally),	one	can	expect	
a	high	accuracy	in	correctly	predicting	presences	as	presence	(i.e.,	
if	 a	 species	 is	observed,	 the	model	will	 also	predict	 its	presence),	
but	low	accuracy	in	predicting	absences	as	absence	[i.e.,	if	a	species	
is	 absent,	 this	 could	be	attributable	either	 to	 the	plot	 falling	out‐
side	its	niche	(correctly	predicted	absence)	or	to	random	absences	
owing	 to	 the	 limited	 plot	 size	 or	 microscale	 non‐climatic	 factors	
(incorrectly	predicted	absence)].	Of	course,	incorrect	absences	can	
also be attributable to observation bias, identification uncertain‐
ties	and	 incomplete	detection,	 further	 lowering	predictive	power.	
We	thus	expect	high	sensitivity,	but	 relatively	 low	specificity	and	
AUC	values,	and	encourage	interpretation	of	these	different	evalu‐
ation	metrics	together	to	assess	the	predictive	power	of	the	models	
(Jiménez‐Valverde,	2012).

All	analyses	were	performed	in	R	(R	Core	Team,	2015).

3  | RESULTS

3.1 | Direct comparison of climatic variables

All	three	studied	bioclimatic	variables	(Bio1	=	mean	annual	tempera‐
ture;	Bio10	=	mean	summer	temperature;	and	Bio11	=	mean	winter	
temperature)	showed	a	consistent	negative	correlation	with	elevation	
in	 almost	 all	 temperature	datasets	 in	 the	 region,	 but	with	 large	dif‐
ferences	in	lapse	rate	(Figure	2).	The	lapse	rate	ranged	for	mean	an‐
nual	temperature	from	c.	−0.6°C	per	100	m	for	CHELSA,	downscaled	
CHELSA	 and	 Topoclimate,	 to	 c.	 −0.4°C	 per	 100	 m	 for	WorldClim,	
EuroLST	and	MODIS	LST,	−0.2°C	per	100	m	for	soil	temperature	and	
−0.1°C	per	100	m	for	E‐OBS.	Mean	annual	temperatures	in	both	years	
were	consistently	higher	for	the	soil	temperature	than	for	all	other	data‐
sets	[i.e.,	both	the	long‐term	temperature	data	(WorldClim,	CHELSA,	
downscaled	CHELSA,	Topoclimate	and	EuroLST;	Figure	3a–e)	and	the	

surface	(MODIS	LST;	Figure	3f)	and	free‐air	(E‐OBS;	Figure	3g)	tem‐
perature	measurements	from	the	same	time	period	(p	<	.001	from	a	
linear	model)],	but	differences	were	larger	at	low	than	at	high	tempera‐
tures.	Differences	of	3–6°C	between	soil	 temperature	and	all	other	
datasets	remained	even	after	correcting	for	possible	interannual	and	
climate	change	effects	(Table	3;	Supporting	Information	Figure	S1a–f).	
Significant	 differences	 of	 ≤3°C	 in	 mean	 annual	 temperature	 could	
also	 be	 observed	 between	 all	 other	 datasets	 (Table	 3;	 Supporting	
Information	Figure	S2).

Despite	the	higher	mean	annual	temperature	in	the	soil,	mean	
summer	 soil	 temperature	 in	 both	 years	 was	 similar	 (compared	
with	WorldClim,	Topoclimate,	EuroLST	and	E‐OBS)	or	even	lower	
(CHELSA,	downscaled	CHELSA	and	MODIS	LST)	than	air	and	sur‐
face	 temperature	 (Figure	3h–n).	After	correcting	 for	 interannual	
and	climate	change	effects,	differences	between	soil	temperature	
and	most	other	datasets	(except	MODIS	LST)	remained	limited	to	
c.	1–1.5°C	(Table	3;	Supporting	Information	Figure	S1g–l).	Summer	
temperature	 recordings	were	 highest	 in	MODIS	 LST	 (Figure	2n;	
Supporting	Information	Figure	S2i,k,l).	The	relationship	with	ele‐
vation	was	again	the	strongest	for	(downscaled)	CHELSA	(−0.6°C	
per	100	m)	and	weakest	for	E‐OBS	and	MODIS	LST.	Winter	tem‐
perature	 showed	 the	 largest	 discrepancy	 between	 soil,	 free‐air	
and	surface	temperatures	(Figure	3),	with	soil	temperatures	being	
close	to	0°C	from	sea	level	up	to	≥900	m	a.s.l.,	and	as	such,	driving	
the	higher	mean	annual	temperatures	in	the	soil	(Figure	2x).	Part	
of this variation was attributable to relatively warm winters with 
plenty	of	snow	in	the	area	in	the	period	2015–2017,	but	the	differ‐
ence	remained	as	high	as	4–11°C	after	correcting	for	the	temporal	
mismatch	(Table	3;	Supporting	Information	Figure	S1n–r).	Surface	
temperatures	were,	in	addition,	colder	than	free‐air	temperatures	
(Supporting	 Information	 Figure	 S2n–r)	 owing	 to	 an	 extended	
frost	 period	 (Supporting	 Information	 Figure	 S3).	 Temperature	
differences	between	years	were	relatively	small,	except	for	mean	
annual	 and	 mean	 summer	 surface	 temperatures	 from	 MODIS	
(Figure	2f,n).

The	above‐mentioned	differences	along	the	elevational	gradient,	
combined	 with	 additional	 effects	 from	 local	 topography,	 resulted	
in large regional differences between the different climate data‐
sets	 in	 general	 (Figure	4),	 and	between	 interpolated	 soil	 tempera‐
ture	and	the	other	datasets	in	particular	(Figure	5).	The	correlation	
analyses	 (Figure	4)	showed	that	 the	climate	datasets	were	nested,	
with	the	strongest	relationships	(across	all	bioclimatic	variables)	be‐
tween	the	datasets	with	long‐term	averages:	(downscaled)	CHELSA,	
Topoclimate,	WorldClim	and	EuroLST.	The	datasets	with	short‐term	
measurements	(in‐situ	soil,	MODIS	LST	and	free‐air	E‐OBS)	differed	
more	from	each	other	than	from	the	long‐term	averages.	Modelled	
mean	annual	temperature	 in	the	soil	was,	as	expected,	several	de‐
grees	 warmer	 than	 in	 all	 other	 datasets,	 especially	 at	 higher	 ele‐
vations	 (Figure	 5),	 whereas	 in	 summer	 the	 soil	 temperature	 was	
warmer	 than	CHELSA	 climate	 and	MODIS	 LST	 at	 high	 elevations,	
but	colder	at	low	elevations	(Figure	5).	Winter	temperature	predic‐
tions	were	≤17°C	higher	in	the	soil	than	in	the	other	datasets,	except	
at the highest elevations. Owing to the large local variation in snow 
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cover,	however,	winter	soil	temperature	predictions	were	unreliable	
(Figure	5;	Supporting	 Information	Figure	S4),	 in	contrast	to	annual	
and	 summer	 temperatures,	 for	 which	 the	 local	 R2 (indicating the 
local	spatial	regression	fit)	of	the	regional	interpolations	was	highly	
consistent	across	space,	albeit	only	moderately	high	(i.e.,	on	average	
50%	for	Bio10	and	37%	for	Bio1).

3.2 | Species distribution modelling

Species	distribution	models	 using	 soil	 temperatures	 explained,	 on	
average,	80%	of	variance	(48%	if	only	Bio1	was	used),	which	was,	on	
average,	18%	(15%	for	models	with	Bio1	only)	more	than	the	models	
using	other	climate	datasets	(Figure	6;	significant	differences	with	
most	 datasets	 after	 correcting	 for	 multiple	 testing).	 Differences	
in	explained	variance	among	SDMs	based	on	these	other	datasets	
were	much	smaller.	Differences	 in	predictive	power	were	not	 sig‐
nificant	 between	 models	 [highest	 for	 Euro‐LST	 and	 downscaled	
CHELSA	(AUC	c. .70), and between .61 and .64 for the other data‐
sets	 (Supporting	 Information	 Figure	 S5)].	 As	 expected,	 sensitivity	

was high (c.	 .85),	 but	 specificity	 was	 low	 (c. .27) for all datasets. 
Predictive	modelling	was	nearly	impossible	with	models	having	Bio1	
only (AUC c.	 .5,	specificity	c. .20), even though sensitivity was still 
high (c. .81).

Model	performances	depended	strongly	on	growth	forms	(i.e.,	
forbs,	 graminoids,	 dwarf	 shrubs	 and	 trees;	 Figure	 6b,c).	We	 ob‐
served	a	significant	net	improvement	in	marginal	R2 values (as an 
indicator	of	descriptive	power	of	the	models)	for	SDMs	based	on	
soil	 temperature	 in	 the	 case	 of	 forbs	 and	 graminoids	 compared	
with the other datasets (on average +24 and +21% for the full 
model,	 respectively,	 and	+20	and	+25%	 for	 the	model	with	Bio1	
only),	 and	 moderately	 so	 for	 shrubs	 (full	 model	 =	 +8%,	 Bio1	 =	
+25%).	However,	there	was	no	such	net	increase	for	trees	(+2	and	
+8% only). On the contrary, we observed a significant net decrease 
in	predictive	values	for	shrubs	and	trees	when	using	soil	tempera‐
ture	compared	with	most	of	the	other	datasets	(AUC,	on		average,	
−.12	 and	 −.11,	 respectively,	 for	 both	 models;	 −.06	 and	 −.08	 for	
Sensitivity),	 but	 not	 so	 for	 forbs	 and	 graminoids	 (Supporting	
Information	Figure	S5b,c).

F I G U R E  2  Temperature	patterns	against	elevation	for	the	different	temperature	datasets.	Average	annual	(Bio1;	a–h),	summer	(Bio10;	
i–p)	and	winter	(Bio11;	q–x)	temperature	for	the	eight	climate	datasets	(columns,	with	temporal	extent	in	parentheses)	against	elevation	of	
the	106	measurement	locations.	Orange	(2015–2016)	and	red	(2016–2017)	lines	are	fitted	with	linear	models

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v) (w) (x)
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4  | DISCUSSION

Our	comparison	of	different	climate	datasets	highlights	that	the	use	
of	a	specific	source	of	climate	data	is	species	and	region	specific	and	
can	have	strong	repercussions	on	the	outcome	of	SDMs,	as	exempli‐
fied	here	 for	 the	distributions	of	50	plant	 species	 along	 steep	 cli‐
matic	gradients	in	a	cold‐climate	region.	Our	data	indeed	revealed	a	
strong	sensitivity	of	SDMs	to	the	climate	dataset	used,	depending	on	
the	growth	form	of	the	species.	In	general,	the	use	of	in‐situ	soil	tem‐
perature	instead	of	surface	or	free‐air	temperature	did	improve	the	
explanatory	power	of	our	SDMs.	It	did	so	much	more	for	forbs	and	
graminoids,	to	a	lesser	degree	for	shrubs,	but	not	for	trees	(Figure	6).	
This	outcome	confirms	recent	studies	arguing	 for	 the	use	of	more	
local climate variables in distribution modelling (e.g., Ashcroft et 
al.,	 2008;	 Pradervand,	 Dubuis,	 Pellissier,	 Guisan,	 &	 Randin,	 2014;	
Slavich	et	al.,	2014;	Opedal	et	al.,	2015;	Meineri	&	Hylander,	2017)	
and	proves	the	validity	of	this	concept	across	a	whole	range	of	pos‐
sible	temperature	data	sources.	Nevertheless,	our	results	also	indi‐
cate that an increased accuracy of climate data does not necessarily 
improve	distribution	models	 for	 all	 species	 or	 in	 all	 circumstances	
(Bennie,	Wilson,	Maclean,	&	Suggitt,	2014;	Pradervand	et	al.,	2014),	
because	it	will	depend	on	the	growth	forms	of	the	species	and	per‐
haps	also	the	regional	climate	characteristics.	The	differences	in	the	
explanatory	power	of	SDMs	could	result	from	differences	in	meas‐
urement	focus	and	spatio‐temporal	resolution	or	extent,	related	to	
the	different	spatio‐temporal	framework	in	which	different	species	
groups	operate,	as	discussed	below.

4.1 | Measurement focus

The	most	critical	differences	observed	between	the	climate	data‐
sets	 in	 the	 present	 study	were	 probably	 driven	 by	measurement	
focus	(free‐air,	land	surface	or	soil),	with	consistently	higher	average	
annual	temperatures	observed	in	the	soil	resulting,	to	a	large	extent,	
from	differences	in	winter	temperatures	(Bio11).	Even	though	free‐
air	 temperature	 predictions	 (WorldClim,	 CHELSA	 and	 E‐OBS)	 for	
winter	 temperature	easily	dropped	below	−7°C,	and	surface	 tem‐
perature	measurements	 (EuroLST,	MODIS	 LST)	were	 even	 lower,	
winter	temperatures	immediately	below	the	soil	surface	were	close	
to	 0°C	 along	most	 of	 the	 elevational	 gradient	 (Figure	 2).	Only	 in	
those	locations	where	global	climate	models	predicted	an	average	
winter	 temperature	below	−10°C	did	measured	 soil	 temperatures	
drop	below	0°C	(Figure	2).	These	differences	remained	even	after	
correcting	 for	 the	 temporal	 mismatch	 in	 the	 different	 datasets	
(Table	3;	Supporting	Information	Figure	S1).	Although	some	of	the	
earliest	studies	on	soil	temperature	reported	a	strong	relationship	
with	 air	 temperature	 across	 all	 seasons	 (Shanks,	 1956),	 it	 is	 clear	
that	both	a	dense	vegetation	cover	and	a	thick	snow	pack	can	pro‐
vide	effective	 insulation	and	protection	against	freezing	events	 in	
the	 subnivium	 (Aalto	 et	 al.,	 2017;	 Dorrepaal,	 Aerts,	 Cornelissen,	
Callaghan,	 &	 Logtestijn,	 2004;	 Geiger,	 1950;	 Pauli	 et	 al.,	 2013;	
Thompson	et	al.,	2018)	and	that	snow	in	the	Arctic	is	a	crucial	ex‐
planatory	 variable	 for	 the	 distribution	 of	 plant	 species	 (Niittynen	
&	Luoto,	2018;	Randin,	Vuissoz,	Liston,	Vittoz,	&	Guisan,	2009).	In	
northern	Norway,	especially,	the	relatively	mild	climate	and	humid	

F I G U R E  3  Plot‐by‐plot	comparisons	of	soil	temperature	data	against	seven	other	sources	of	temperature	data.	Mean	annual	(Bio1;	
a–g),	summer	(Bio10;	h–n)	and	winter	(Bio11;	o–u)	temperature,	for	all	106	measurement	locations	for	2015–2016	(orange	lines,	grey	dots)	
and	2016–2017	(red	lines,	black	dots).	Black	lines	show	first	bisectors	(a	hypothetical	perfect	match);	red	and	orange	lines	are	fitted	with	
generalized	additive	models	for	each	year	of	temperature	measurements	separately.	Measurement	periods	are	given	in	parentheses

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)
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air	from	the	ocean	result	in	thick	winter	snow	packs	that	can	pro‐
vide	a	significant	decoupling	between	air,	surface	and	soil	tempera‐
ture	(Pauli	et	al.,	2013;	Thompson	et	al.,	2018).	Such	an	insulating	
snow	pack	can	affect	plant	life	in	several	ways,	through	its	effects	
on	overwintering	 survival,	 productivity,	 reproductive	 success	 and	
nutrient	and	water	availability	(Niittynen	&	Luoto,	2018),	with	both	
positive	(e.g.,	fewer	frost	events)	and	negative	effects	(e.g.,	limited	
growing	 season)	 observed.	 For	many	 species	 in	 the	 region,	 espe‐
cially	low‐growing	forbs	and	graminoids,	we	have	shown	that	using	
near‐surface	 soil	 temperatures	 instead	 of	 free‐air	 temperatures,	
which	allows	the	incorporation	of	these	snow	cover	effects,	is	cru‐
cial	 to	describe	 the	distribution	of	 small‐stature	plants	accurately	
(Niittynen	&	Luoto,	2018;	Randin,	Vuissoz,	et	al.,	2009).	For	trees,	
however,	the	absence	of	model	improvement	through	the	use	of	soil	
temperature	might	result	from	a	stronger	correlation	with	air	than	
with	soil	temperature	owing	to	higher	maximal	canopy	heights,	at	
least	in	later	life	stages.	In	winter	and	early	spring,	trees	are	likely	
to	be	much	more	affected	by	air	temperatures	and	freezing	events	
affecting	 their	buds	above	 the	snow	than	by	 temperatures	 in	 the	
soil	(Körner,	2003).

These	results	also	indicate	that	the	relative	importance	of	using	
soil	temperature	in	SDMs	will	depend	on	the	topography	and	large‐
scale	climate	of	the	region.	Most	 importantly,	the	amount	of	fresh	
snow	in	winter	will	define	the	strength	of	the	discrepancy	between	
winter	(and	thus	indirectly	annual)	mean	temperatures	in	the	soil	and	
in	the	air	(Cohen,	1994;	Zhang,	2005).	The	mismatch	is,	in	our	study,	
indeed	 significantly	 larger	 in	 the	warmer	but	 snowier	 (Norwegian)	
plots	at	low	elevations	than	in	the	colder	yet	drier	(Swedish)	plots	at	
high	elevations	(Figure	3).	For	summer	temperature,	our	data	overall	
showed a more consistent match between the different datasets, al‐
though with minor buffering effects of the vegetation. Even though 
the	discrepancy	between	measurement	foci	 is	 thus	region	specific	
(and	probably	even	more	different	 in	 tropical	 regions),	we	suggest	
that	the	use	of	climate	data	in	close	proximity	to	the	study	species	
is	always	recommended.	Importantly,	however,	the	use	of	soil	tem‐
perature	does	not	resolve	this	measurement	mismatch	fully,	because	
only	part	of	the	plants	 is	belowground.	Although	our	data	demon‐
strate	 a	 significant	 improvement	 in	 the	 use	 of	 soil	 temperature	
over	free‐air	temperature	data	for	species	groups	entirely	covered	
by	 snow	 in	winter,	 an	 optimal	 approach	would	 incorporate	 in‐situ	

TA B L E  3  Differences	in	average	temperature	between	the	climatic	datasets

 CHELSA down Topoclimate EuroLST MODIS LST E‐OBS In‐situ soil

Bio1       

CHELSA −0.03 −0.36 −3.19 −1.96 −1.11 2.67

CHELSA	down – −0.33 −3.16 −1.92 −1.08 2.68

Topoclimate – – −2.84 −1.59 −0.75 3.00

EuroLST – – – 1.22 2.08 5.77

MODIS	LST – – – – 0.91 4.53

E‐OBS – – – – – 3.53

Bio10       

CHELSA −0.03 −2.86 −3.28 1.45 −2.85 −1.48

CHELSA	down – −2.83 −3.25 1.49 −2.81 −1.48

Topoclimate – – −0.42 4.30 0.01 1.24

EuroLST – – – 4.70 0.43 1.67

MODIS	LST – – – – −4.23 −3.15

E‐OBS – – – – – 1.12

Bio11       

CHELSA −0.03 2.60 −2.47 −4.82 0.02 6.30

CHELSA	down – 2.63 −2.44 −4.78 0.05 6.29

Topoclimate – – −5.07 −7.39 −2.58 3.74

EuroLST – – – −2.35 2.49 8.72

MODIS	LST – – – – 4.89 10.99

E‐OBS – – – – – 6.06

Note.	Two‐by‐two	comparisons	between	the	three	studied	bioclimatic	variables	(Bio1	=	mean	annual	temperature;	Bio10	=	mean	temperature	of	
the	warmest	quarter;	Bio11	=	mean	temperature	of	the	coldest	quarter)	for	the	different	climatic	datasets	(except	WorldClim)	after	correcting	for	
interannual	and	climate	change	effects	using	ERA	Interim	(for	details,	see	Methods).	Analysis	is	based	on	data	from	all	106	measurement	locations;	
for	MODIS	LST,	E‐OBS	and	in‐situ	soil	temperature,	only	the	data	from	2016–2017	are	tested.	Values	show	the	differences	in	average	temperature	in	
degrees	Celsius	between	the	two	datasets,	with	positive	values	indicating	higher	temperatures	in	the	variable	in	the	column	than	in	the	row.	Values	
in bold are significant at p	<	.05	from	Student’s	paired	t‐tests.	Relationships	with	in‐situ	soil	temperature	are	visualized	in	the	Supporting	Information	
Figure	S1,	whereas	some	relationships	among	the	other	variables	are	visualized	in	Supporting	Information	Figure	S2.
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climate	measurements	both	above	and	below	the	soil	surface.	The	
latter	can	be	achieved,	for	example,	with	the	temperature	and	soil	
moisture	plant	simulator	sensors	as	described	by	Wild	et	al.	(2019),	
measuring	temperatures	at,	above	and	below	the	surface.

Despite	the	clear	benefits	of	using	soil	temperature	data	in	SDMs,	
a	major	drawback	(next	to	the	cost	associated	with	obtaining	in‐situ	
soil	temperature	measurements)	lies	in	the	increased	local‐scale	het‐
erogeneity,	especially	in	winter.	The	soil	temperatures	in	our	study	
were	hard	to	predict	accurately	using	a	50	×	50	m	DEM‐based	inter‐
polation	approach.	More	in‐situ	temperature	measurements,	in	ad‐
dition	to	the	inclusion	of	other	microclimate‐related	variables,	such	

as	snow	cover	maps,	might	be	needed	to	improve	interpolations	of	
microclimate	at	fine	spatial	resolution.	This	is	also	a	prerequisite	for	
better	 predictive	 performances	 of	 SDMs.	 Follow‐up	 studies	 with	
larger	 datasets	 and	 in‐situ	 measurements	 of	 more	 environmental	
variables	(e.g.,	soil	moisture,	air	temperature,	precipitation	or	snow	
cover) are thus recommended to investigate this further.

Although	 satellite‐measured	 land	 surface	 temperature	 data	
(MODIS	 LST	 and	 EuroLST)	 resulted	 in	mean	 annual	 temperatures	
within	the	same	range	as	those	obtained	with	free‐air	temperature	
measurements,	the	LSTs	were,	throughout	the	measurement	period,	
significantly higher in summer and lower in winter, thus resulting in 

F I G U R E  4  Dendrograms	of	collinearity	between	different	temperature	datasets.	Data	from	the	106	measurement	locations	for	mean	
annual	(Bio1;	a),	summer	(Bio10;	b)	and	winter	(Bio11;	c)	temperature.	Measurement	periods	are	given	in	parentheses.	Maps	show	the	
regional	(100	×	100	km)	predictions	for	each	dataset	and	bioclimatic	variable.	For	Bio1,	cut‐outs	of	the	maps	are	shown	(location	specified	by	
black	squares)

(a)

(b)

(c)



     |  13LEMBRECHTS ET aL.

an	 increased	 overall	 annual	 temperature	 range	 (Figure	 2;	 Table	 3;	
Supporting	Information	Figure	S1).	These	extremes	were	smoothed	
out,	however,	when	using	the	EuroLST	temperature	averages	over	a	
10‐year	period.	Although	the	use	of	satellite‐based	LSTs	for	SDMs	
has	 been	 largely	 underexplored	 until	 now,	 our	 study	 adds	 to	 the	
growing	 list	of	 recent	studies	 indicating	 the	potential	of	 these	un‐
tapped	 data	 resources	 for	 accurately	 predicting	 species	 distribu‐
tions	(see	e.g.,	Bisrat,	White,	Beard,	&	Richard	Cutler,	2012;	Cord	&	
Rödder,	2011;	Neteler	et	al.,	2013).	We	expect	that	LST	timeseries	
with	an	even	higher	spatial	resolution,	such	as	Landsat	(Cook,	2014),	
will	turn	out	to	be	the	crucial	link	between	local‐scale	temperature	
measurements and global climate models. Our results, however, 
indicate	 that	 smoothed,	 long‐term	 averages,	 such	 as	 EuroLST,	 are	
preferable	 to	 short‐term	 measurements,	 especially	 for	 predictive	
modelling.	 Similar	 to	 the	 issue	 of	 spatial	 heterogeneity	 for	 in‐situ	
soil	 temperature	data,	averages	over	 long‐term	time	series	are,	by	

nature,	more	likely	to	increase	the	predictive	performances	of	SDMs	
compared	with	more	erratic	fluctuations	based	on	short‐term	data.

4.2 | Temporal extent

Differences between the climate datasets used could also be at‐
tributed	to	variation	in	temporal	extent,	with	the	datasets	building	
on	long‐term	historical	averages	(WorldClim,	CHELSA,	Topoclimate	
and	 EuroLST)	 showing	 the	 strongest	 correlation	 with	 each	 other	
(Figure	 4).	 Correlations	were	weakest	 for	 the	 three	 datasets	with	
only 2 years of data, but with different measurement foci, as de‐
scribed	above	(MODIS	LST,	E‐OBS	and	soil	temperature).	Although	
patterns	over	time	for	these	datasets	were	relatively	consistent	be‐
tween	measurement	years	(Figure	2),	they	did	reveal	more	variation	
between	air	and	surface	temperature	than	between	EuroLST	and	the	
other	datasets	with	long‐term	climatic	averages.	The	discrepancy	in	

F I G U R E  5  Differences	(in	degrees	Celsius)	between	regionally	modelled	soil	temperature	and	other	temperature	data	sources.	
Differences	in	annual	average	temperature	(Bio1),	mean	temperature	of	the	warmest	quarter	(Bio10)	and	mean	temperature	of	the	coldest	
quarter	(Bio11)	are	shown	for	soil	temperature	versus	downscaled	CHELSA	(left),	E‐OBS	(middle)	and	MODIS	LST	(right).	Comparisons	
between	soil	temperature	and	CHELSA,	WorldClim	and	EuroLST	are	not	shown,	because	trends	were	similar.	Values	below	zero	indicate	
a	lower	value	for	the	soil	temperature	compared	with	the	other	dataset;	values	above	zero	a	higher	value

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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temporal	 extents	might	 also	 explain	 why	 the	 performance	 of	 our	
predictive	 models	 decreased	 in	 some	 cases	 for	 shrubs	 and	 trees	
when	 using	 short‐term	 soil	 (or	 surface)	 temperatures	 (Supporting	
Information	 Figure	 S5).	 These	 long‐lived	 species	 are	 likely	 to	 be	

relatively	inert	to	short‐term	changes	in	their	environment	(Körner,	
2003),	which	might	make	it	harder	to	predict	their	distribution	based	
on	locally	measured	short‐term	temperatures	(Ashcroft	et	al.,	2008).	
Long‐lived	organisms,	such	as	most	arctic‐alpine	species	in	the	study	

(a)

(b) (c)
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region,	could	also	persist	outside	their	niche	for	considerable	parts	
of	their	life	(Bond	&	Midgley,	2001),	adding	to	the	complexity	of	pre‐
dicting	their	distribution	using	short‐term	temperature	data.

4.3 | Spatial resolution

Our	 comparative	 approach	 indicates	 that	 the	 downscaling	 or	 in‐
terpolation	 of	 climate	 data,	 as	 applied	 here	 respectively	 to	 global	
datasets	such	as	CHELSA	and	the	in‐situ	soil	temperature	data	and	
topoclimatic	dataset	from	Aalto	et	al.	(2017),	was	rather	successful.	
Downscaling	of	CHELSA	from	1,000	×	1,000	m	to	30	×	30	m	based	
on	the	physiography	worked	well,	as	 indicated	by	the	high	 local	R2 
values	(.90	±	.06	for	Bio1	and	Bio10;	.89	±	.06	for	Bio11;	Supporting	
Information	Figure	S4),	but	nevertheless	resulted	in	only	minor	im‐
provements	 of	 the	 regional	 SDMs	 compared	 with	 coarse‐grained	
CHELSA	 data	 (3.7%	 and	 .035	 for	 the	R2	 and	 AUC	 values,	 respec‐
tively).	 This	 lack	 of	 improvement	 is	 in	 disagreement	 with	 several	
other	 studies	 (e.g.,	 Gillingham,	 Huntley,	 Kunin,	 &	 Thomas,	 2012;	
Slavich et al., 2014). Part of this could be attributable to the inherent 
limitations	 in	 the	original	CHELSA	dataset;	 unlike	 elevation,	 small‐
scale	topographic	variables,	such	as	slope	and	aspect,	are	not	taken	
into	account	in	the	original	CHELSA	model,	and	their	inclusion	in	the	
downscaling	approach	is	thus	unlikely	to	have	major	effects.	Small‐
scale	topographic	effects	on	microclimate	are	more	correctly	taken	
into	account	in	the	topoclimatic	dataset	from	Aalto	et	al.	(2017),	how‐
ever,	making	the	latter	approach	recommendable	above	the	former.	
The	fact	that	the	topoclimatic	dataset	did	not	perform	significantly	
better	in	the	SDMs	than	CHELSA	(ΔR2	=	−7%	and	+	5%,	and	AUC	=	
−0.01	and	+	.06,	depending	on	the	model)	might	suggest	again	that	
an	increased	level	of	detail	is	not	better	by	default,	but	depends	on	
the	context	of	the	study	(Bennie	et	al.,	2014).	The	most	likely	expla‐
nation	for	this	lack	of	improvement	in	model	performance	in	this	case	
is	 that	 the	distribution	of	 the	 studied	 alpine	 species	might	 be	 less	
driven	by	small‐scale	topoclimatic	variation	in	air	temperature	than	
by	snow‐cover‐induced	variation	in	soil	temperature.

Interpolation	of	the	soil	temperature	data	worked	well	across	the	
whole	study	region,	except	for	winter	temperature,	where	the	strong	
local	 variation	 and	 the	 highly	 non‐linear	 correlation	with	 elevation	
probably	 resulted	 in	 inaccurate	 predictions	 (Figure	 4;	 Supporting	
Information	Figure	S3;	Ashcroft	et	al.,	2008).	The	 large	differences	
in	winter	temperatures	between	measurement	locations	(and	the	low	
predictability	of	soil	winter	temperature	in	the	region)	thus	suggest	
that	caution	is	needed,	because	in	many	regions	winter	temperatures	

are	likely	to	be	crucial	for	the	distribution	of	species	(Williams,	Henry,	
&	Sinclair,	2015).	A	larger	dataset	and	more	accurate	predictor	vari‐
ables	(e.g.,	related	to	the	duration	of	snow	cover;	Niittynen	&	Luoto,	
2018)	might	be	needed	to	improve	these	interpolation	efforts.

4.4 | Implications

The	observed	differences	in	the	climate	datasets	and	SDMs	at	the	re‐
gional scale advocate for a careful selection of the climate data source 
when	modelling	species	distributions,	based	on	a	priori	ecological	as‐
sumptions	 about	 the	 relationship	 of	 the	 studied	 organism	with	 the	
regional	environment,	and	the	comparison	 (or	 joint	use)	of	different	
datasets	 (Buermann	 et	 al.,	 2008;	Rebaudo,	 Faye,	&	Dangles,	 2016).	
Measurement	focus,	temporal	extent	and	spatio‐temporal	resolution	
should	all	be	taken	into	account	with	regard	to	the	studied	species	and	
area.	Is	the	species	affected	by	snow	cover?	Is	it	an	annual	or	a	peren‐
nial	species?	Is	the	focal	species	mobile	or	sessile?	Does	the	study	area	
reach	above	the	tree	line?	Is	it	in	topographically	challenging	terrain?

Our	study	highlights	the	importance	of	growth	forms.	Soil	tem‐
perature	was	 highly	 important	 for	 forbs	 and	 graminoids	 and,	 to	 a	
certain	extent,	for	shrubs,	but	not	so	for	trees.	Only	when	making	
ecologically	meaningful	a	priori	decisions	and	when	comparing	the	
performance	of	 different	datasets,	 and	perhaps	 their	 interactions,	
can one be sure that the observed trends relate to the real (micro)
climate	experienced	by	the	study	species	or	species	group(s)	in	the	
study	region.	Understanding	these	processes	in	the	current	climate	
is	 a	 crucial	 step	 before	model	 projections	 can	 be	 improved	 under	
climate change. In order to advance towards this goal, there is an 
urgent	need	for	large‐scale	datasets	of	microclimate	data;	ecologists	
and	 climatologists	 should	 consider	 in‐depth	 on‐the‐ground,	 long‐
term microclimate monitoring along climatic gradients to be able to 
improve	our	microclimatic	models	for	use	in	SDMs	(Lembrechts,	Nijs,	
&	Lenoir,	2019).	Nevertheless,	our	case	study	suggests	that	SDMs	
can	be	relatively	robust	to	several	characteristics	of	different	types	
of	climate	datasets,	 such	as	spatial	and	 temporal	 resolution,	espe‐
cially	in	the	relatively	stable,	slow‐reacting	vegetation	types	of	high‐
latitudinal	mountains.	Additionally,	 there	 is	 a	need	 to	 improve	our	
abilities to forecast microclimate data in the future, because climate 
change	 is	 likely	 to	 affect	 soil,	 surface	 and	air	 temperatures	differ‐
ently	(Ashcroft	&	Gollan,	2013;	De	Frenne	et	al.,	2019).	Significant	
progress	has	been	made	in	this	regard;	for	example,	by	integrating	
microclimatic	 dynamics	 and	 processes	 such	 as	microclimatic	 buff‐
ering	in	predictions	(Keppel	et	al.,	2015;	Lenoir	et	al.,	2017;	Wason,	

F I G U R E  6  Proportion	of	explained	variance	(marginal	R2)	by	species	distribution	models	(SDMs)	using	the	different	temperature	
datasets.	(a)	Boxplots	of	the	marginal	R2	of	distribution	models	for	50	plant	species	in	a	subset	of	59	plots,	based	on	binomial	generalized	
linear	mixed‐effect	models	(GLMMs)	built	with	the	different	temperature	datasets:	using	Bio1,	Bio10	and	Bio11	together	(left,	“Full”)	or	
Bio1	only	(right,	“Bio1”).	(b)	Differences	in	marginal	R2	between	the	models	using	soil	temperature	and	all	other	datasets	for	forbs	(n	=	25),	
graminoids (n	=	7),	(dwarf)	shrubs	(n	=	15)	and	trees	(n	=	3).	(c)	Heatmaps	visualizing	the	differences	in	marginal	R2 between the models using 
soil	temperature	and	each	of	the	other	climatic	datasets	for	the	different	growth	forms.	Green	(positive	values)	indicates	better	performance	
of	soil	temperature	models,	blue	a	better	performance	of	the	other	dataset	in	question.	“*”	and	“▪”	respectively	indicate	significant	(p	<	.05)	
and	marginally	significant	(.05	<	p	<	.1)	differences	from	zero	as	obtained	with	Student’s	two‐tailed	t‐test
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Bevilacqua,	&	Dovciak,	2017),	but	there	is	still	a	need	for	improve‐
ment before the same diversity and quality of climate datasets will 
be	available	for	SDM	projections	into	future	climate	as	we	have	now	
for current climate.
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