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Abstract
Aim: Although species distribution models (SDMs) traditionally link species occur‐
rences to free‐air temperature data at coarse spatio‐temporal resolution, the distri‐
bution of organisms might instead be driven by temperatures more proximal to their 
habitats. Several solutions are currently available, such as downscaled or interpolated 
coarse‐grained free‐air temperatures, satellite‐measured land surface temperatures 
(LST) or in‐situ‐measured soil temperatures. A comprehensive comparison of tem‐
perature data sources and their performance in SDMs is, however, currently lacking.
Location: Northern Scandinavia.
Time period: 1970–2017.
Major taxa studied: Higher plants.
Methods: We evaluated different sources of temperature data (WorldClim, CHELSA, 
MODIS, E‐OBS, topoclimate and soil temperature from miniature data loggers), dif‐
fering in spatial resolution (from 1″ to 0.1°), measurement focus (free‐air, ground‐sur‐
face or soil temperature) and temporal extent (year‐long versus long‐term averages), 
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1  | INTRODUC TION

Species distribution models (SDMs) are widely used to describe 
and forecast the spatial distribution of species (Elith & Leathwick, 
2009). Species distribution models relate species occurrence data 
to information about the environmental conditions at these loca‐
tions (Elith & Leathwick, 2009; Guisan & Thuiller, 2007; Jiménez‐
Valverde et al., 2011). The most common strategy is to work with 
long‐term (e.g., 30  years) interpolated averages of a set of biocli‐
matic variables at 30″ resolution (c. 1 × 1 km at the equator; e.g., 
WorldClim or CHELSA; Gonzalez‐Moreno, Diez, Richardson, & Vila, 
2015; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; Karger et al., 
2017; Sears, Raskin, & Angilletta, 2011; Slavich, Warton, Ashcroft, 
Gollan, & Ramp, 2014; Warren, Glor, & Turelli, 2008). Although such 
macroclimate data might be sufficient to capture the conditions 
on flat terrain, many environments host a heterogeneous topog‐
raphy (e.g., across steep elevational gradients in mountain regions) 
that makes the microclimate near the ground vary noticeably over 
short distances (Gottfried, Pauli, Reiter, & Grabherr, 1999; Holden, 
Abatzoglou, Luce, & Baggett, 2011; Opedal, Armbruster, & Graae, 
2015; Scherrer & Körner, 2011; Sears et al., 2011; Stewart, Simonsen, 
Svenning, Schmidt, & Pellissier, 2018). In order to make realistic fore‐
casts of species distributions and distribution shifts in such hetero‐
geneous environments, it has been suggested that climate data at 
finer spatio‐temporal resolutions are needed (Graae et al., 2012, 
2018; Illan, Gutierrez, & Wilson, 2010; Lenoir et al., 2013; Opedal 
et al., 2015; Scherrer & Körner, 2011). Such new climate datasets, 
including in‐situ logging and remote sensing, are now increasingly 
becoming available (Bramer et al., 2018). Nonetheless, an evaluation 

of their performance in SDMs is necessary to provide guidance for 
future studies; in particular, for those predicting the responses of 
species to climate change (Stewart et al., 2018).

In the high‐latitude and high‐elevation areas of northern 
Europe, local temperatures have been found to vary up to 6°C 
within 1 km2 spatial units, reflecting the local topography (Lenoir 
et al., 2013). This high temperature variation depends, for instance, 
on the interaction between temperature and snow distribution 
and, consequently, affects the length of the local growing season 
(Aalto, Scherrer, Lenoir, Guisan, & Luoto, 2018; Körner, 2003). 
Local temperatures also vary greatly between seasons, and short‐
term extreme weather conditions have been shown to be more 
relevant for species distributions than the average climatic condi‐
tions (Ashcroft & Gollan, 2012). Including this variation in SDMs is 
likely to be crucial, for instance in the context of stepping stones, 
holdouts or microrefugia (Dobrowski, 2011; Meineri & Hylander, 
2017; Opedal et al., 2015). Stepping stones refer to areas with mi‐
croclimates that facilitate shifts in species ranges (e.g., upward or 
poleward movement during climate change or after non‐native spe‐
cies introductions; Hannah et al., 2014; Lembrechts, et al., 2018; 
Pauchard et al., 2009). Holdouts and microrefugia, in contrast, are 
areas with a relatively stable microclimate where isolated popula‐
tions can persist for a certain time (Ashcroft, 2010; Hannah et al., 
2014; Lenoir, Hattab, & Pierre, 2017; Meineri & Hylander, 2017). 
Climatic variability within an area can indeed considerably buffer 
effects of climate warming (Lenoir et al., 2013, 2017), which often 
remain undetected using macroclimate data, possibly leading to the 
overestimation of rates of extinction and range expansion (Willis & 
Bhagwat, 2009).

and used them to fit SDMs for 50 plant species with different growth forms in a 
high‐latitudinal mountain region.
Results: Differences between these temperature data sources originating from meas‐
urement focus and temporal extent overshadow the effects of temporal climatic dif‐
ferences and spatio‐temporal resolution, with elevational lapse rates ranging from 
−0.6°C per 100 m for long‐term free‐air temperature data to −0.2°C per 100 m for 
in‐situ soil temperatures. Most importantly, we found that the performance of the 
temperature data in SDMs depended on the growth forms of species. The use of 
in‐situ soil temperatures improved the explanatory power of our SDMs (R2 on aver‐
age +16%), especially for forbs and graminoids (R2 +24 and +21% on average, respec‐
tively) compared with the other data sources.
Main conclusions: We suggest that future studies using SDMs should use the tem‐
perature dataset that best reflects the ecology of the species, rather than automati‐
cally using coarse‐grained data from WorldClim or CHELSA.
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bioclimatic envelope modelling, bioclimatic variables, climate change, growth forms, land 
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Moreover, many organisms (particularly small‐stature plants, 
certain types of insects and soil microbes) experience temperatures 
at ground or sub‐surface level, which can differ greatly from ambient 
air temperatures that are usually measured at 2 m above the soil sur‐
face (Aalto et al., 2018; Körner & Hiltbrunner, 2018; Poorter et al., 
2016). Especially in high‐latitude and high‐elevation regions, snow 
cover, for example, acts as an insulator, thereby strongly decoupling 
soil and air temperatures (Pauli, Zuckerberg, Whiteman, & Porter, 
2013; Poorter et al., 2016; Thompson, Zuckerberg, Porter, & Pauli, 
2018), and biophysical processes owing to vegetation cover may also 
decouple upper atmospheric conditions from boundary layer condi‐
tions (Geiger, 1950).

In order to overcome this spatio‐temporal mismatch between cli‐
mate data and species ecology and to improve predictions of species’ 
current and future distributions, four main approaches are commonly 
used: (a) to downscale existing coarse‐grained (i.e., 1,000 × 1,000 m 
resolution) climate data (McCullough et al., 2016); (b) to interpolate 
climate station data (Aalto, Riihimäki, Meineri, Hylander, & Luoto, 
2017); (c) to gather local climate data through field measurements 
(Lenoir et al., 2017; Potter, Woods, & Pincebourde, 2013; Slavich  
et al., 2014); or (d) to monitor climatic conditions continuously in 
space and time through remote sensing technologies (e.g., satellite‐ 
measured land surface temperatures; Metz, Rocchini, & Neteler, 
2014; Wan, 2008).

In the first two approaches, a high spatial resolution can be 
obtained using topographic variables derived from digital eleva‐
tion models, which are available at much finer resolutions (e.g., 1″, 
which is c. 30 × 30 m at the equator). Such downscaled or interpo‐
lated climate data have been found to be a significant improvement 
over macroclimatic variables for modelling species distributions 
(Dobrowski, 2011; Meineri & Hylander, 2017; Randin, Engler, et al., 
2009; Slavich et al., 2014).

In the third approach, one uses in‐situ measurements to provide 
fine‐grained climatic conditions with high spatial accuracy (micro‐
climate) (Meineri & Hylander, 2017; Opedal et al., 2015). Such field 
measurements can also be interpolated to the level of regional cli‐
mate using topographical information (Ashcroft, Chisholm, & French, 
2008; Greiser, Meineri, Luoto, Ehrlén, & Hylander, 2018; Maclean, 
Suggitt, Wilson, Duffy, & Bennie, 2017), yet usually cover short 
temporal and small geographical extents only. In addition to a fine 
spatial resolution, in‐situ measurements provide the opportunity to 
adapt the measurement focus to the ecology or life‐form of the spe‐
cies (e.g., by measuring near‐surface soil temperature instead of air 
temperature). Gathering in‐situ temperature data, however, requires 
considerably more resources than the previously mentioned down‐
scaling approaches (Meineri & Hylander, 2017; Opedal et al., 2015). 
Increasing the spatio‐temporal resolution and extent of such field 
measurements generally refines the predictions, but also presents 
a logistical challenge (Meineri & Hylander, 2017; Wundram, Pape, & 
Loffler, 2010).

Finally, the fourth approach (i.e., using remotely sensed data) 
is now more frequently used in SDMs (Pottier et al., 2014), for 
instance through remotely sensed snow cover data or by using 

the normalized difference vegetation index (NDVI) (Yannic et al., 
2014). One such remotely sensed source of data, for which the 
spatio‐temporal resolution, extent and accuracy is rapidly improv‐
ing, is satellite‐based land surface temperatures (LSTs; Wan, 2008; 
Wan et al., 2015). Remotely sensed LSTs are now freely available 
at the global scale at the vegetation canopy or land surface level, 
with a temporal resolution of days over a period of decades and 
with a spatial resolution ranging from 30″ (c.  1,000  ×  1,000  m 
at the equator) to as fine as 1″ (c. 30 × 30 m) (Cook, 2014). This 
type of data does have the advantage over free‐air temperature 
datasets, such as WorldClim or CHELSA, of being a direct and 
contiguous measurement in space and time, as opposed to data 
interpolation and temporal averaging from a network of weather 
stations, yet might be affected strongly by land surface character‐
istics and cloud cover in the area (Zellweger et al., 2019). Thanks 
to the increasing availability of these long‐term and accurate time 
series, such satellite‐based LST datasets offer very promising re‐
search avenues to fill the gap between local temperature measure‐
ments and global‐scale climatic datasets.

These different approaches to obtain suitable climate data have 
been extensively explored and applied in SDMs (Bramer et al., 2018), 
yet a comparative study of all of these (downscaled and interpolated 
macroclimate data, field measurements and satellite‐based LST) to‐
gether, concerning both their inherent characteristics and their role 
in SDMs, has been missing until now. Such a comparison is neverthe‐
less needed urgently in order to quantify the progress that can be 
made by replacing the traditional global climate models with other 
temperature data sources. We hypothesize in that regard that the 
best result depends mainly on two critical factors: (a) the climatic 
characteristics of the study region; and (b) the growth forms of the 
study organisms.

Here, we use a case study along steep climatic gradients in the 
Northern Scandes, a mountain range in northern Scandinavia, to 
assess both factors and to provide guidelines for the use of tem‐
perature data in SDMs in topographically challenging regions. 
We compare the characteristics of different temperature data‐
sets within the region, in addition to the descriptive and predic‐
tive power of SDMs for 50 plant species with different growth 
forms: forbs, graminoids, (dwarf) shrubs and trees. We compare 
global climate datasets (i.e., WorldClim and CHELSA) with data‐
sets of remotely sensed LSTs (MODIS), a topographic downscaling 
and interpolation approach, and soil temperature obtained with 
miniature data loggers, and use three widely applied and ecolog‐
ically relevant (i.e., bioclimatic) temperature variables: mean an‐
nual temperature, and mean temperature of the warmest and the 
coldest quarter. We hypothesize a significant effect of the spatial 
resolution of the climate data and of measurement focus (free‐
air, surface or soil) and temporal extent on temperature patterns 
across topographic gradients. Increasing spatio‐temporal accuracy 
of temperature data, especially through the use of in‐situ mea‐
surements, is expected to improve the descriptive and predictive 
power of the SDMs, despite the associated reduction in temporal 
extent. The optimal resolution, extent and measurement focus 
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are, however, likely to depend on the growth forms of the as‐
sessed species (i.e., the spatio‐temporal framework in which they 
operate).

2  | METHODS

2.1 | Study region

The study was conducted in the Northern Scandes moun‐
tain range in Norway and Sweden, between 67°46′23.5″  N, 
16°30′52.6″  E (south‐west) and 68°40′33.6″  N, 18°58′40.4″  E 
(north‐east), covering an area of 100 × 100 km and an elevation 
range from 0 to 2,097 m above sea level (a.s.l.). The area ranges 
from the Norwegian coast, with a relatively mild and wet climate 
dominated by birch forests with heathland understorey, to the sig‐
nificantly drier and colder eastern side of the Northern Scandes, 
typically vegetated by subarctic, alpine dwarf shrub vegetation 
(Lembrechts, Milbau, & Nijs, 2014). The region was chosen for 
its strong climatic gradient, with large macro‐ and microclimatic 

variation owing to a distinct topography and high‐latitude location 
(Graae et al., 2012; Lenoir et al., 2013; Scherrer & Körner, 2011). In 
total, 106 temperature measurement locations were spread across 
the study area (Figure 1).

2.2 | Climate data

For this area, we obtained eight different types of climate data 
encompassing a wide range of measurement foci, spatio‐tempo‐
ral resolutions and temporal extents (Table 1). For each of these 
datasets, we extracted or calculated the mean annual temperature 
and mean temperature of the warmest and coldest quarter [bio‐
climatic variables Bio1, Bio10 and Bio11, following the definition 
of WorldClim (Hijmans et al., 2005), hereafter called mean annual, 
summer and winter temperature, respectively]. These ecologically 
relevant variables belong to the set of physiologically most per‐
tinent bioclimatic determinants of spatial plant species distribu‐
tion and are thus commonly used in SDMs (e.g., Austin & Van Niel, 
2011; Cord & Rödder, 2011; Distler, Schuetz, Velásquez‐Tibatá, & 

F I G U R E  1  Study area and measurement locations. Location of the study area in Scandinavia (left) and digital elevation model (DEM) 
at 1'' resolution  (c. 30 × 30 m at the equator) across the study area (right). Dots on the DEM show locations of the 106 soil temperature 
measurements. Species data sampling was done in the locations marked with blue dots (a,b). See Table 2 for datasets (blue = 1; orange = 2; 
green = 3; red = 4). Elevational gradients range from 0 to 700 m a.s.l. (a,b) and from 400 to 1,200 m a.s.l. (c)
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Langham, 2015), and they allow us to take into account seasonal 
differences in climate accurately. The different datasets are dis‐
cussed in detail below.

2.2.1 | WorldClim

The WorldClim database (v.2.0) provides globally interpolated free‐
air temperature conditions over a 30‐year time period (1970–2000) 
at a spatial resolution of 30″ (c. 1,000 × 1,000 m at the equator) (Fick 
& Hijmans, 2017). The studied bioclimatic variables were directly 
downloaded from the website (www.world​clim.org).

2.2.2 | CHELSA

The climatologies at high resolution for the earth's land surface areas 
(CHELSA, v.1.2) is a global dataset based on quasi‐mechanistical sta‐
tistical downscaling of free‐air temperatures from the ERA Interim 
(ECMWF) global circulation model (Dee et al., 2011), over a period 
of 34  years (1979–2013) and with the same spatial resolution as 
WorldClim (30″, c. 1,000 × 1,000 m at the equator), yet for a more 
recent time period (Karger et al., 2017). Bioclimatic variables were 
again downloaded directly from the website (www.chelsa-clima​
te.org).

2.2.3 | Downscaled CHELSA data (hereafter called 
“downscaled”)

We used the bioclimatic variables downloaded from CHELSA, at an 
original resolution of 30″ (c.  1,000 × 1,000 m at the equator), and 
downscaled them statistically even further, to a 1″ (c. 30 × 30 m at 
the equator) resolution based on topographic variation, using a phys‐
iographically informed model fitted with a geographically weighted 
regression (GWR) technique (Fotheringham, Brunsdon, & Charlton, 
2003). In short, GWR extends the traditional regression approach 
by allowing estimated regression parameters to vary across space. 
Therefore, GWR models are particularly relevant for exploration 
of the scale‐dependent and spatial non‐stationary relationships 
between free‐air temperatures and physiographic variables (here: 
elevation, slope, eastness, northness, distance to the ocean and 

clear‐sky solar radiation) (Su, Foody, & Cheng, 2012). For more de‐
tails, see Supporting Information Appendix S1.

2.2.4 | Topoclimate

Fine‐resolution gridded climate data for the region were obtained 
from Aalto et al. (2017), who included topography‐driven small‐scale 
climate heterogeneity in a topoclimatic interpolation of weather 
station data across northern Scandinavia, using generalized addi‐
tive modelling at a resolution of 1″ (c.  30 × 30 m at the equator). 
They modelled monthly average temperatures from 1981 until 2010 
using geographical location, elevation, water cover, solar radiation 
and cold‐air pooling. Bioclimatic variables were calculated based on 
these monthly averages.

2.2.5 | MODIS LST

The moderate resolution imaging spectroradiometer (MODIS) sat‐
ellite TERRA (Wan et al., 2015) from the National Aeronautics and 
Space Administration (USA) provides global LST. We extracted data 
from MOD11A2: 8‐day averages based on the clear sky day‐ and 
night‐time records at a 30″ (c. 1,000 × 1,000 m at the equator) reso‐
lution, for a period of 2 years corresponding to the in‐situ measure‐
ments (from August 2015 to July 2017; see below). Mean annual 
temperature was calculated in ArcGIS by averaging the temperature 
per pixel for 2015–2016 and 2016–2017, separately, from day of the 
year (DOY) 209 in year n (e.g., 27 July 2015) to DOY 208 in year 
n + 1 (e.g., 26 July 2016), which was the set of 8‐day averages corre‐
sponding most closely to the period used for the in‐situ temperature 
measurements described below (see sub‐section below on Soil tem‐
peratures). Mean summer and winter temperatures were calculated 
in a similar manner, but for DOY 185 (e.g., 3 July 2015) to 272 (28 
September 2015) and from DOY 1 (e.g., 1 January 2016) to 88 (28 
March 2016), respectively.

2.2.6 | EuroLST

The EuroLST dataset is a gap‐filled dataset at the European scale of 
LST derived from MODIS (see the sub‐section above on MODIS LST) 

TA B L E  1  The eight climate datasets studied and their geographical and temporal extent, spatial resolution and measurement focus

Dataset Initial source Geographical extent Spatial resolution Measurement focus Temporal coverage

WorldClim WorldClim Global 30″ Free‐air 1970–2000

CHELSA CHELSA Global 30″ Free‐air 1979–2013

Downscaled CHELSA 10,000 km2 1″ Free‐air 1979–2013

Topoclimate Aalto et al. 
(2017)

10,000 km2 1″ Free‐air 1981–2010

MODIS LST MODIS Global 30″ Surface 2015–2017

EuroLST MODIS Europe c. 7.5″ Surface 2001–2011

E‐OBS E‐OBS Europe 0.1° Free‐air 2015–2017

Soil temperature iButtons 10,000 km2 1″ Soil 2015–2017

http://www.worldclim.org
http://www.chelsa-climate.org
http://www.chelsa-climate.org
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at a spatial resolution of 250 × 250 m and averaged over a temporal 
extent of 10 years (Metz et al., 2014). This dataset has been created 
using a combination of weighted temporal averaging with statistical 
modelling and spatial interpolation to fill in the gaps in the MODIS LST 
dataset and to improve its spatial resolution. Relevant bioclimatic vari‐
ables were downloaded directly from the website (courses.neteler.
org/eurolst‐seamless‐gap‐free‐daily‐european‐maps‐land‐surface‐
temperatures).

2.2.7 | E‐OBS

The E‐OBS dataset (v.17.0) provides daily gridded climate data of 
free‐air temperature for Europe at a 0.1° (c. 10,000 × 10,000 m at 
the equator) spatial resolution, interpolated from weather stations 
(Haylock et al., 2008), used here over the study period from August 
2015 to July 2017 (as in the subsection on MODIS LST). The gridded 
dataset is created by first interpolating the monthly mean tempera‐
ture from the weather stations using three‐dimensional thin‐plate 
splines, interpolating the daily anomalies using a spatial kriging ap‐
proach with an external drift for temperature, and then combining 
these monthly and daily estimates. Temperature data were down‐
loaded directly from the website (https​://www.ecad.eu/downl​oad/
ensem​bles/downl​oad.php) and subsequently used to generate the 
three studied bioclimatic variables in R.

2.2.8 | Soil temperatures

Near‐surface soil temperatures were logged every 1.5 or 2 h (iBut‐
tons: DS1922L or DS1921G, with an accuracy of 0.5°C, www.maxim​
integ​rated.com, San José, CA, USA) at a depth of 3 cm below the 
soil surface in 106 locations along several elevational gradients in 
Norway and Sweden (Figure 1; Table 2). Loggers were wrapped in 
parafilm and put in a small zipper bag to prevent water damage. The 
loggers were originally established for several different projects 
(Lembrechts et al., 2018, 2014, 2016) along seven elevational gradi‐
ents, together ranging from 0 to 1,200 m a.s.l., of which three were 
in Norway and four in Sweden. The three bioclimatic variables were 
calculated in R (R Core Team, 2015) for each 106 locations and for 

each year (from 2015 to 2017, corresponding to the periods used in 
the sub‐section above on MODIS LST) from daily averages. Based 
on these soil temperature data, we made predictions for each bio‐
climatic variable for the whole study area of 100 × 100 km for the 
period from August 2016 to July 2017 using GWRs (as in the sub‐sec‐
tion above featuring the downscaling approach) based on the same 
physiographic variables (i.e., elevation, slope, eastness, northness, 
distance to the ocean and clear‐sky solar radiation). The models were 
used to predict the bioclimatic variables for every 1″ (c. 30 × 30 m at 
the equator) pixel in the study area. For more details on the interpo‐
lation approach, see Supporting Information Appendix S1.

2.3 | Plant species observations

Plant species data were obtained during summer 2017 in the frame‐
work of the Mountain Invasion Research Network (www.mount​ainin​
vasio​ns.org) long‐term monitoring effort, and specifically as a fol‐
low‐up to the survey of Lembrechts et al. (2014) in the Norwegian 
study plots (59 out of the 106 plots with in‐situ soil temperature 
measurements; see Figure 1; Table 2). Within the framework of 
this survey, three elevational gradients were selected (spanning on 
average 700 m in elevation). The elevation range covered by each 
gradient was divided into 19 equally spaced elevation bands, re‐
sulting in 20 sampling sites per gradient. At each elevation, pres‐
ence/absence of all vascular plant species was recorded in plots of 
2 × 50 m in natural vegetation. At one end of each of these plots, 
the temperature logger (see dataset described in the sub‐section on 
Soil temperatures above) was buried. We used data for the 50 most 
common plant species in the survey (i.e., ≥10 occurrences). Species 
were grouped based on their growth forms (Supporting Information 
Table S1): forbs (n = 25); graminoids (n = 7); dwarf shrubs (n = 15); and 
trees (n = 3). All species were native to the region.

2.4 | Direct comparison of climatic variables

2.4.1 | Relationship to elevation

To assess differences in the behaviour of the eight climate datasets 
along an elevational gradient, the three bioclimatic variables derived 

TA B L E  2  Overview of in‐situ soil temperature measurement plots in Sweden and Norway (n = 106)

Region
Number of 
gradients Number of sites Number of plots Surface area Temporal extent

Elevation  
(m a.s.l.) Species data

1. Norway 3 59 59 2 × 100 m 1 August 2015 to 
31 July 2017

0–700 Yes

2. Sweden 2 4 23 0.6 × 1.2 m 1 August 2015 to 
31 July 2016

900–1,100 No

3. Sweden 2 6 11 0.6 × 1.2 m 1 August 2015 to 
31 July 2017

400–900 No

4. Sweden 2 13 13 2 × 10 m 1 August 2015 to 
31 July 2017

400–1,200 No

Note. For each region (numbered from 1 to 4; refer to the map in Figure 1), we present the number of elevational gradients (i.e., different mountains 
monitored), sites and plots (with more plots than sites indicating repeated temperature measurements in a <20 × 20 m area), in addition to the tem‐
poral extent, the length of the elevational gradient, and whether species data are available to run species distribution models (SDMs).

https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
http://www.maximintegrated.com
http://www.maximintegrated.com
http://www.mountaininvasions.org
http://www.mountaininvasions.org
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from these climate datasets were plotted separately against the 
elevation of the 106 locations of the in‐situ soil temperature data 
loggers. For the gridded climate datasets, we extracted a value for 
each bioclimatic variable for each location. We used linear models 
(function lm in R; R Core Team, 2015) to assess the lapse rate (i.e., the 
slope, in degrees Celsius per 100 m) of decrease in temperature with 
elevation. For MODIS LST, E‐OBS and the soil temperature meas‐
urements, data were plotted and modelled separately for the two 
study years (2015–2016 and 2016–2017).

2.4.2 | Paired comparisons

For each of the 106 studied locations, we compared the values for 
each climatic dataset (and each of the three bioclimatic variables) 
against the others, to investigate consistent temperature deviations 
between datasets. Trends for each bioclimatic variable and each 
dataset were visualized with general additive models (GAMs), with 
a cubic regression line and without a pre‐set smoothing value (func‐
tion gam, R package mgcv; Wood, 2006), following procedures de‐
scribed by Zuur, Ieno, Walker, Saveliev, and Smith (2009). General 
additive models were used because we did not want to make restric‐
tive assumptions about the relationships of the datasets with each 
other.

2.4.3 | Correlative dendrograms

For all 106 locations, we made correlative dendrograms (distance = 1 
–ρ, where ρ is Pearson's product–moment correlation) to visualize 
correlations among and relationships between the different data‐
sets, using the function hclust from the package spatstat (Baddeley, 
Rubak, & Turner, 2015).

2.4.4 | Regional climate predictions

We generated regional maps for the different climate datasets (see 
the Climate data section and Supporting Information Appendix S1 
for more details on how the maps were generated for the in‐situ 
measurements), and calculated for each pixel the absolute tempera‐
ture difference between the respective dataset and the regionally 
modelled soil temperature at a 1″ (c. 30 × 30 m at the equator) spatial 
resolution.

2.4.5 | Temporal correction

For a more formal comparison between the datasets with differ‐
ent temporal windows, we calculated, for each climatic dataset, 
its difference from the “background climate”, taken as tempera‐
tures for the window in question from the ERA Interim (ECMWF) 
2 m free‐air temperature database (Dee et al., 2011). This is a time 
series of monthly means of daily means from 1979 to 2018 (hence 
covering the time period for all studied datasets except WorldClim), 
for which we calculated average Bio1, Bio10 and Bio11 over the 
whole 100 × 100 km study area (based on the original 0.75° × 0.75° 

resolution grid). We then re‐ran the paired comparisons (see Paired 
comparisons section) with the temperature off‐set (i.e., the differ‐
ence between the bioclimatic value, for each observation and for 
each dataset, and the average bioclimatic value from ERA Interim 
for the corresponding period), using Student’s paired t‐tests to test 
for potential differences, such as differences between Bio1(soil tem‐
perature(2016–2017)) and Bio1(ERA Interim(2016–2017)) and between 
Bio1(CHELSA(1979–2013)) and Bio1(ERA Interim(1979–2013)).

Use of this off‐set of temperatures from a standardized and com‐
mon time series allowed us to correct, to some extent, for differ‐
ences in the temporal scope among the climatic datasets, and thus 
climate change and interannual weather variation. Although this 
does not take into account possible decoupling of climate change 
between soil, surface and air temperature, it does allow the estima‐
tion of the size of the temporal effect in the dataset, and thus more 
precise quantification of the difference between in‐situ soil tem‐
perature and the other datasets.

2.5 | Species distribution modelling

The regional distribution of the 50 plant species was modelled 
using species‐specific generalized linear mixed‐effect models 
[GLMMs; function glmer, package lme4 (Bates, Maechler, Bolker, 
& Walker, 2015), family  =  binomial] as a function of mean an‐
nual, summer and winter temperature, and their quadratic terms. 
Gradient (plant data were available from three different elevational 
gradients; Table 2) was used as a random intercept term in these 
models to account for structural variation between gradients. This 
was repeated for each climate dataset (except for E‐OBS, because 
owing to the limited climate variation measured within the region, 
species distributions could not be modelled), resulting in a total 
of 350 SDMs (50 species × seven datasets). For both MODIS LST 
and soil temperature, only the data from the measurement year 
before the species observations (2016–2017) were used, whereas 
the bioclimatic variables from 2015–2016 were highly correlated 
with those of 2016–2017 and thus excluded. The variance infla‐
tion factor (VIF; function vif, package car; Fox & Weisberg, 2011) 
was calculated for each of the climatic datasets to test the correla‐
tion between the different bioclimatic variables. Given that the 
VIF (a value between zero and infinity) exceeded five (indicating 
a strong correlation) for some datasets (specifically, those with 
long‐term climatic averages), separate models including only Bio1 
as explanatory variables were made, and results were compared 
between both approaches.

The explained variance in the present distribution of the species 
(R2 of the fixed effect, i.e., the marginal R2; Nakagawa & Schielzeth, 
2013) was then calculated for each model and compared across all 
species between the different datasets with an ANOVA and Tukey’s 
HSD post‐hoc test [differences in R2 between growth forms (factor 
with four levels), model assumptions were met]. We also compared 
the increase in R2 values obtained by using soil temperature versus 
the other climate datasets for the different growth forms (forbs, 
graminoids, shrubs and trees) separately.
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Finally, we assessed the predictive power of the different SDMs 
using a leave‐one‐out method, each time calibrating the model 
with 58 data points (plots) and predicting for the remaining one. 
We calculated the area under the curve (AUC) of the receiver op‐
eratiing characteristic (ROC), using the function performance from 
the package ROCR (Sing, Sander, Beerenwinkel, & Lengauer, 2005), 
in addition to the sensitivity (presences correctly predicted as 
presences) and the specificity (absences correctly predicted as ab‐
sences) metrics. A value of .5 was used to binarize predictions. This 
was repeated for each species and for each climate dataset, and 
differences in AUC, sensitivity and specificity between SDMs using 
the different climatic datasets were again assessed with an ANOVA 
and a post‐hoc Tukey’s HSD test. We also compared the increase in 
AUC, sensitivity and specificity obtained by using soil temperature 
versus the other climate datasets for the different growth forms 
separately. Note that this predictive approach is limited for three 
reasons. First, the restricted dataset size is likely to constrain the 
predictive power of the models. Second, for compartive purposes, 
our SDMs are only calibrated using bioclimatic predictors, and thus 
predictive power (as estimated here using AUC values) will be rel‐
atively low. Third, when using predictive modelling in small‐sized 
plots (i.e., 100 m2 here, versus 1 km2 traditionally), one can expect 
a high accuracy in correctly predicting presences as presence (i.e., 
if a species is observed, the model will also predict its presence), 
but low accuracy in predicting absences as absence [i.e., if a species 
is absent, this could be attributable either to the plot falling out‐
side its niche (correctly predicted absence) or to random absences 
owing to the limited plot size or microscale non‐climatic factors 
(incorrectly predicted absence)]. Of course, incorrect absences can 
also be attributable to observation bias, identification uncertain‐
ties and incomplete detection, further lowering predictive power. 
We thus expect high sensitivity, but relatively low specificity and 
AUC values, and encourage interpretation of these different evalu‐
ation metrics together to assess the predictive power of the models 
(Jiménez‐Valverde, 2012).

All analyses were performed in R (R Core Team, 2015).

3  | RESULTS

3.1 | Direct comparison of climatic variables

All three studied bioclimatic variables (Bio1 = mean annual tempera‐
ture; Bio10 = mean summer temperature; and Bio11 = mean winter 
temperature) showed a consistent negative correlation with elevation 
in almost all temperature datasets in the region, but with large dif‐
ferences in lapse rate (Figure 2). The lapse rate ranged for mean an‐
nual temperature from c. −0.6°C per 100 m for CHELSA, downscaled 
CHELSA and Topoclimate, to c.  −0.4°C per 100  m for WorldClim, 
EuroLST and MODIS LST, −0.2°C per 100 m for soil temperature and 
−0.1°C per 100 m for E‐OBS. Mean annual temperatures in both years 
were consistently higher for the soil temperature than for all other data‐
sets [i.e., both the long‐term temperature data (WorldClim, CHELSA, 
downscaled CHELSA, Topoclimate and EuroLST; Figure 3a–e) and the 

surface (MODIS LST; Figure 3f) and free‐air (E‐OBS; Figure 3g) tem‐
perature measurements from the same time period (p < .001 from a 
linear model)], but differences were larger at low than at high tempera‐
tures. Differences of 3–6°C between soil temperature and all other 
datasets remained even after correcting for possible interannual and 
climate change effects (Table 3; Supporting Information Figure S1a–f). 
Significant differences of ≤3°C in mean annual temperature could 
also be observed between all other datasets (Table 3; Supporting 
Information Figure S2).

Despite the higher mean annual temperature in the soil, mean 
summer soil temperature in both years was similar (compared 
with WorldClim, Topoclimate, EuroLST and E‐OBS) or even lower 
(CHELSA, downscaled CHELSA and MODIS LST) than air and sur‐
face temperature (Figure 3h–n). After correcting for interannual 
and climate change effects, differences between soil temperature 
and most other datasets (except MODIS LST) remained limited to 
c. 1–1.5°C (Table 3; Supporting Information Figure S1g–l). Summer 
temperature recordings were highest in MODIS LST (Figure 2n; 
Supporting Information Figure S2i,k,l). The relationship with ele‐
vation was again the strongest for (downscaled) CHELSA (−0.6°C 
per 100 m) and weakest for E‐OBS and MODIS LST. Winter tem‐
perature showed the largest discrepancy between soil, free‐air 
and surface temperatures (Figure 3), with soil temperatures being 
close to 0°C from sea level up to ≥900 m a.s.l., and as such, driving 
the higher mean annual temperatures in the soil (Figure 2x). Part 
of this variation was attributable to relatively warm winters with 
plenty of snow in the area in the period 2015–2017, but the differ‐
ence remained as high as 4–11°C after correcting for the temporal 
mismatch (Table 3; Supporting Information Figure S1n–r). Surface 
temperatures were, in addition, colder than free‐air temperatures 
(Supporting Information Figure S2n–r) owing to an extended 
frost period (Supporting Information Figure S3). Temperature 
differences between years were relatively small, except for mean 
annual and mean summer surface temperatures from MODIS 
(Figure 2f,n).

The above‐mentioned differences along the elevational gradient, 
combined with additional effects from local topography, resulted 
in large regional differences between the different climate data‐
sets in general (Figure 4), and between interpolated soil tempera‐
ture and the other datasets in particular (Figure 5). The correlation 
analyses (Figure 4) showed that the climate datasets were nested, 
with the strongest relationships (across all bioclimatic variables) be‐
tween the datasets with long‐term averages: (downscaled) CHELSA, 
Topoclimate, WorldClim and EuroLST. The datasets with short‐term 
measurements (in‐situ soil, MODIS LST and free‐air E‐OBS) differed 
more from each other than from the long‐term averages. Modelled 
mean annual temperature in the soil was, as expected, several de‐
grees warmer than in all other datasets, especially at higher ele‐
vations (Figure 5), whereas in summer the soil temperature was 
warmer than CHELSA climate and MODIS LST at high elevations, 
but colder at low elevations (Figure 5). Winter temperature predic‐
tions were ≤17°C higher in the soil than in the other datasets, except 
at the highest elevations. Owing to the large local variation in snow 
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cover, however, winter soil temperature predictions were unreliable 
(Figure 5; Supporting Information Figure S4), in contrast to annual 
and summer temperatures, for which the local R2 (indicating the 
local spatial regression fit) of the regional interpolations was highly 
consistent across space, albeit only moderately high (i.e., on average 
50% for Bio10 and 37% for Bio1).

3.2 | Species distribution modelling

Species distribution models using soil temperatures explained, on 
average, 80% of variance (48% if only Bio1 was used), which was, on 
average, 18% (15% for models with Bio1 only) more than the models 
using other climate datasets (Figure 6; significant differences with 
most datasets after correcting for multiple testing). Differences 
in explained variance among SDMs based on these other datasets 
were much smaller. Differences in predictive power were not sig‐
nificant between models [highest for Euro‐LST and downscaled 
CHELSA (AUC c. .70), and between .61 and .64 for the other data‐
sets (Supporting Information Figure S5)]. As expected, sensitivity 

was high (c.  .85), but specificity was low (c.  .27) for all datasets. 
Predictive modelling was nearly impossible with models having Bio1 
only (AUC c.  .5, specificity c.  .20), even though sensitivity was still 
high (c. .81).

Model performances depended strongly on growth forms (i.e., 
forbs, graminoids, dwarf shrubs and trees; Figure 6b,c). We ob‐
served a significant net improvement in marginal R2 values (as an 
indicator of descriptive power of the models) for SDMs based on 
soil temperature in the case of forbs and graminoids compared 
with the other datasets (on average  +24 and  +21% for the full 
model, respectively, and +20 and +25% for the model with Bio1 
only), and moderately so for shrubs (full model = +8%, Bio1 = 
+25%). However, there was no such net increase for trees (+2 and 
+8% only). On the contrary, we observed a significant net decrease 
in predictive values for shrubs and trees when using soil tempera‐
ture compared with most of the other datasets (AUC, on average, 
−.12 and −.11, respectively, for both models; −.06 and −.08 for 
Sensitivity), but not so for forbs and graminoids (Supporting 
Information Figure S5b,c).

F I G U R E  2  Temperature patterns against elevation for the different temperature datasets. Average annual (Bio1; a–h), summer (Bio10; 
i–p) and winter (Bio11; q–x) temperature for the eight climate datasets (columns, with temporal extent in parentheses) against elevation of 
the 106 measurement locations. Orange (2015–2016) and red (2016–2017) lines are fitted with linear models

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v) (w) (x)
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4  | DISCUSSION

Our comparison of different climate datasets highlights that the use 
of a specific source of climate data is species and region specific and 
can have strong repercussions on the outcome of SDMs, as exempli‐
fied here for the distributions of 50 plant species along steep cli‐
matic gradients in a cold‐climate region. Our data indeed revealed a 
strong sensitivity of SDMs to the climate dataset used, depending on 
the growth form of the species. In general, the use of in‐situ soil tem‐
perature instead of surface or free‐air temperature did improve the 
explanatory power of our SDMs. It did so much more for forbs and 
graminoids, to a lesser degree for shrubs, but not for trees (Figure 6). 
This outcome confirms recent studies arguing for the use of more 
local climate variables in distribution modelling (e.g., Ashcroft et 
al., 2008; Pradervand, Dubuis, Pellissier, Guisan, & Randin, 2014; 
Slavich et al., 2014; Opedal et al., 2015; Meineri & Hylander, 2017) 
and proves the validity of this concept across a whole range of pos‐
sible temperature data sources. Nevertheless, our results also indi‐
cate that an increased accuracy of climate data does not necessarily 
improve distribution models for all species or in all circumstances 
(Bennie, Wilson, Maclean, & Suggitt, 2014; Pradervand et al., 2014), 
because it will depend on the growth forms of the species and per‐
haps also the regional climate characteristics. The differences in the 
explanatory power of SDMs could result from differences in meas‐
urement focus and spatio‐temporal resolution or extent, related to 
the different spatio‐temporal framework in which different species 
groups operate, as discussed below.

4.1 | Measurement focus

The most critical differences observed between the climate data‐
sets in the present study were probably driven by measurement 
focus (free‐air, land surface or soil), with consistently higher average 
annual temperatures observed in the soil resulting, to a large extent, 
from differences in winter temperatures (Bio11). Even though free‐
air temperature predictions (WorldClim, CHELSA and E‐OBS) for 
winter temperature easily dropped below −7°C, and surface tem‐
perature measurements (EuroLST, MODIS LST) were even lower, 
winter temperatures immediately below the soil surface were close 
to 0°C along most of the elevational gradient (Figure 2). Only in 
those locations where global climate models predicted an average 
winter temperature below −10°C did measured soil temperatures 
drop below 0°C (Figure 2). These differences remained even after 
correcting for the temporal mismatch in the different datasets 
(Table 3; Supporting Information Figure S1). Although some of the 
earliest studies on soil temperature reported a strong relationship 
with air temperature across all seasons (Shanks, 1956), it is clear 
that both a dense vegetation cover and a thick snow pack can pro‐
vide effective insulation and protection against freezing events in 
the subnivium (Aalto et al., 2017; Dorrepaal, Aerts, Cornelissen, 
Callaghan, & Logtestijn, 2004; Geiger, 1950; Pauli et al., 2013; 
Thompson et al., 2018) and that snow in the Arctic is a crucial ex‐
planatory variable for the distribution of plant species (Niittynen 
& Luoto, 2018; Randin, Vuissoz, Liston, Vittoz, & Guisan, 2009). In 
northern Norway, especially, the relatively mild climate and humid 

F I G U R E  3  Plot‐by‐plot comparisons of soil temperature data against seven other sources of temperature data. Mean annual (Bio1; 
a–g), summer (Bio10; h–n) and winter (Bio11; o–u) temperature, for all 106 measurement locations for 2015–2016 (orange lines, grey dots) 
and 2016–2017 (red lines, black dots). Black lines show first bisectors (a hypothetical perfect match); red and orange lines are fitted with 
generalized additive models for each year of temperature measurements separately. Measurement periods are given in parentheses

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)
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air from the ocean result in thick winter snow packs that can pro‐
vide a significant decoupling between air, surface and soil tempera‐
ture (Pauli et al., 2013; Thompson et al., 2018). Such an insulating 
snow pack can affect plant life in several ways, through its effects 
on overwintering survival, productivity, reproductive success and 
nutrient and water availability (Niittynen & Luoto, 2018), with both 
positive (e.g., fewer frost events) and negative effects (e.g., limited 
growing season) observed. For many species in the region, espe‐
cially low‐growing forbs and graminoids, we have shown that using 
near‐surface soil temperatures instead of free‐air temperatures, 
which allows the incorporation of these snow cover effects, is cru‐
cial to describe the distribution of small‐stature plants accurately 
(Niittynen & Luoto, 2018; Randin, Vuissoz, et al., 2009). For trees, 
however, the absence of model improvement through the use of soil 
temperature might result from a stronger correlation with air than 
with soil temperature owing to higher maximal canopy heights, at 
least in later life stages. In winter and early spring, trees are likely 
to be much more affected by air temperatures and freezing events 
affecting their buds above the snow than by temperatures in the 
soil (Körner, 2003).

These results also indicate that the relative importance of using 
soil temperature in SDMs will depend on the topography and large‐
scale climate of the region. Most importantly, the amount of fresh 
snow in winter will define the strength of the discrepancy between 
winter (and thus indirectly annual) mean temperatures in the soil and 
in the air (Cohen, 1994; Zhang, 2005). The mismatch is, in our study, 
indeed significantly larger in the warmer but snowier (Norwegian) 
plots at low elevations than in the colder yet drier (Swedish) plots at 
high elevations (Figure 3). For summer temperature, our data overall 
showed a more consistent match between the different datasets, al‐
though with minor buffering effects of the vegetation. Even though 
the discrepancy between measurement foci is thus region specific 
(and probably even more different in tropical regions), we suggest 
that the use of climate data in close proximity to the study species 
is always recommended. Importantly, however, the use of soil tem‐
perature does not resolve this measurement mismatch fully, because 
only part of the plants is belowground. Although our data demon‐
strate a significant improvement in the use of soil temperature 
over free‐air temperature data for species groups entirely covered 
by snow in winter, an optimal approach would incorporate in‐situ 

TA B L E  3  Differences in average temperature between the climatic datasets

  CHELSA down Topoclimate EuroLST MODIS LST E‐OBS In‐situ soil

Bio1            

CHELSA −0.03 −0.36 −3.19 −1.96 −1.11 2.67

CHELSA down – −0.33 −3.16 −1.92 −1.08 2.68

Topoclimate – – −2.84 −1.59 −0.75 3.00

EuroLST – – – 1.22 2.08 5.77

MODIS LST – – – – 0.91 4.53

E‐OBS – – – – – 3.53

Bio10            

CHELSA −0.03 −2.86 −3.28 1.45 −2.85 −1.48

CHELSA down – −2.83 −3.25 1.49 −2.81 −1.48

Topoclimate – – −0.42 4.30 0.01 1.24

EuroLST – – – 4.70 0.43 1.67

MODIS LST – – – – −4.23 −3.15

E‐OBS – – – – – 1.12

Bio11            

CHELSA −0.03 2.60 −2.47 −4.82 0.02 6.30

CHELSA down – 2.63 −2.44 −4.78 0.05 6.29

Topoclimate – – −5.07 −7.39 −2.58 3.74

EuroLST – – – −2.35 2.49 8.72

MODIS LST – – – – 4.89 10.99

E‐OBS – – – – – 6.06

Note. Two‐by‐two comparisons between the three studied bioclimatic variables (Bio1 = mean annual temperature; Bio10 = mean temperature of 
the warmest quarter; Bio11 = mean temperature of the coldest quarter) for the different climatic datasets (except WorldClim) after correcting for 
interannual and climate change effects using ERA Interim (for details, see Methods). Analysis is based on data from all 106 measurement locations; 
for MODIS LST, E‐OBS and in‐situ soil temperature, only the data from 2016–2017 are tested. Values show the differences in average temperature in 
degrees Celsius between the two datasets, with positive values indicating higher temperatures in the variable in the column than in the row. Values 
in bold are significant at p < .05 from Student’s paired t‐tests. Relationships with in‐situ soil temperature are visualized in the Supporting Information 
Figure S1, whereas some relationships among the other variables are visualized in Supporting Information Figure S2.
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climate measurements both above and below the soil surface. The 
latter can be achieved, for example, with the temperature and soil 
moisture plant simulator sensors as described by Wild et al. (2019), 
measuring temperatures at, above and below the surface.

Despite the clear benefits of using soil temperature data in SDMs, 
a major drawback (next to the cost associated with obtaining in‐situ 
soil temperature measurements) lies in the increased local‐scale het‐
erogeneity, especially in winter. The soil temperatures in our study 
were hard to predict accurately using a 50 × 50 m DEM‐based inter‐
polation approach. More in‐situ temperature measurements, in ad‐
dition to the inclusion of other microclimate‐related variables, such 

as snow cover maps, might be needed to improve interpolations of 
microclimate at fine spatial resolution. This is also a prerequisite for 
better predictive performances of SDMs. Follow‐up studies with 
larger datasets and in‐situ measurements of more environmental 
variables (e.g., soil moisture, air temperature, precipitation or snow 
cover) are thus recommended to investigate this further.

Although satellite‐measured land surface temperature data 
(MODIS LST and EuroLST) resulted in mean annual temperatures 
within the same range as those obtained with free‐air temperature 
measurements, the LSTs were, throughout the measurement period, 
significantly higher in summer and lower in winter, thus resulting in 

F I G U R E  4  Dendrograms of collinearity between different temperature datasets. Data from the 106 measurement locations for mean 
annual (Bio1; a), summer (Bio10; b) and winter (Bio11; c) temperature. Measurement periods are given in parentheses. Maps show the 
regional (100 × 100 km) predictions for each dataset and bioclimatic variable. For Bio1, cut‐outs of the maps are shown (location specified by 
black squares)

(a)

(b)

(c)
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an increased overall annual temperature range (Figure 2; Table 3; 
Supporting Information Figure S1). These extremes were smoothed 
out, however, when using the EuroLST temperature averages over a 
10‐year period. Although the use of satellite‐based LSTs for SDMs 
has been largely underexplored until now, our study adds to the 
growing list of recent studies indicating the potential of these un‐
tapped data resources for accurately predicting species distribu‐
tions (see e.g., Bisrat, White, Beard, & Richard Cutler, 2012; Cord & 
Rödder, 2011; Neteler et al., 2013). We expect that LST timeseries 
with an even higher spatial resolution, such as Landsat (Cook, 2014), 
will turn out to be the crucial link between local‐scale temperature 
measurements and global climate models. Our results, however, 
indicate that smoothed, long‐term averages, such as EuroLST, are 
preferable to short‐term measurements, especially for predictive 
modelling. Similar to the issue of spatial heterogeneity for in‐situ 
soil temperature data, averages over long‐term time series are, by 

nature, more likely to increase the predictive performances of SDMs 
compared with more erratic fluctuations based on short‐term data.

4.2 | Temporal extent

Differences between the climate datasets used could also be at‐
tributed to variation in temporal extent, with the datasets building 
on long‐term historical averages (WorldClim, CHELSA, Topoclimate 
and EuroLST) showing the strongest correlation with each other 
(Figure 4). Correlations were weakest for the three datasets with 
only 2  years of data, but with different measurement foci, as de‐
scribed above (MODIS LST, E‐OBS and soil temperature). Although 
patterns over time for these datasets were relatively consistent be‐
tween measurement years (Figure 2), they did reveal more variation 
between air and surface temperature than between EuroLST and the 
other datasets with long‐term climatic averages. The discrepancy in 

F I G U R E  5  Differences (in degrees Celsius) between regionally modelled soil temperature and other temperature data sources. 
Differences in annual average temperature (Bio1), mean temperature of the warmest quarter (Bio10) and mean temperature of the coldest 
quarter (Bio11) are shown for soil temperature versus downscaled CHELSA (left), E‐OBS (middle) and MODIS LST (right). Comparisons 
between soil temperature and CHELSA, WorldClim and EuroLST are not shown, because trends were similar. Values below zero indicate 
a lower value for the soil temperature compared with the other dataset; values above zero a higher value

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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temporal extents might also explain why the performance of our 
predictive models decreased in some cases for shrubs and trees 
when using short‐term soil (or surface) temperatures (Supporting 
Information Figure S5). These long‐lived species are likely to be 

relatively inert to short‐term changes in their environment (Körner, 
2003), which might make it harder to predict their distribution based 
on locally measured short‐term temperatures (Ashcroft et al., 2008). 
Long‐lived organisms, such as most arctic‐alpine species in the study 

(a)

(b) (c)



     |  15LEMBRECHTS et al.

region, could also persist outside their niche for considerable parts 
of their life (Bond & Midgley, 2001), adding to the complexity of pre‐
dicting their distribution using short‐term temperature data.

4.3 | Spatial resolution

Our comparative approach indicates that the downscaling or in‐
terpolation of climate data, as applied here respectively to global 
datasets such as CHELSA and the in‐situ soil temperature data and 
topoclimatic dataset from Aalto et al. (2017), was rather successful. 
Downscaling of CHELSA from 1,000 × 1,000 m to 30 × 30 m based 
on the physiography worked well, as indicated by the high local R2 
values (.90 ± .06 for Bio1 and Bio10; .89 ± .06 for Bio11; Supporting 
Information Figure S4), but nevertheless resulted in only minor im‐
provements of the regional SDMs compared with coarse‐grained 
CHELSA data (3.7% and .035 for the R2 and AUC values, respec‐
tively). This lack of improvement is in disagreement with several 
other studies (e.g., Gillingham, Huntley, Kunin, & Thomas, 2012; 
Slavich et al., 2014). Part of this could be attributable to the inherent 
limitations in the original CHELSA dataset; unlike elevation, small‐
scale topographic variables, such as slope and aspect, are not taken 
into account in the original CHELSA model, and their inclusion in the 
downscaling approach is thus unlikely to have major effects. Small‐
scale topographic effects on microclimate are more correctly taken 
into account in the topoclimatic dataset from Aalto et al. (2017), how‐
ever, making the latter approach recommendable above the former. 
The fact that the topoclimatic dataset did not perform significantly 
better in the SDMs than CHELSA (ΔR2 = −7% and + 5%, and AUC = 
−0.01 and + .06, depending on the model) might suggest again that 
an increased level of detail is not better by default, but depends on 
the context of the study (Bennie et al., 2014). The most likely expla‐
nation for this lack of improvement in model performance in this case 
is that the distribution of the studied alpine species might be less 
driven by small‐scale topoclimatic variation in air temperature than 
by snow‐cover‐induced variation in soil temperature.

Interpolation of the soil temperature data worked well across the 
whole study region, except for winter temperature, where the strong 
local variation and the highly non‐linear correlation with elevation 
probably resulted in inaccurate predictions (Figure 4; Supporting 
Information Figure S3; Ashcroft et al., 2008). The large differences 
in winter temperatures between measurement locations (and the low 
predictability of soil winter temperature in the region) thus suggest 
that caution is needed, because in many regions winter temperatures 

are likely to be crucial for the distribution of species (Williams, Henry, 
& Sinclair, 2015). A larger dataset and more accurate predictor vari‐
ables (e.g., related to the duration of snow cover; Niittynen & Luoto, 
2018) might be needed to improve these interpolation efforts.

4.4 | Implications

The observed differences in the climate datasets and SDMs at the re‐
gional scale advocate for a careful selection of the climate data source 
when modelling species distributions, based on a priori ecological as‐
sumptions about the relationship of the studied organism with the 
regional environment, and the comparison (or joint use) of different 
datasets (Buermann et al., 2008; Rebaudo, Faye, & Dangles, 2016). 
Measurement focus, temporal extent and spatio‐temporal resolution 
should all be taken into account with regard to the studied species and 
area. Is the species affected by snow cover? Is it an annual or a peren‐
nial species? Is the focal species mobile or sessile? Does the study area 
reach above the tree line? Is it in topographically challenging terrain?

Our study highlights the importance of growth forms. Soil tem‐
perature was highly important for forbs and graminoids and, to a 
certain extent, for shrubs, but not so for trees. Only when making 
ecologically meaningful a priori decisions and when comparing the 
performance of different datasets, and perhaps their interactions, 
can one be sure that the observed trends relate to the real (micro)
climate experienced by the study species or species group(s) in the 
study region. Understanding these processes in the current climate 
is a crucial step before model projections can be improved under 
climate change. In order to advance towards this goal, there is an 
urgent need for large‐scale datasets of microclimate data; ecologists 
and climatologists should consider in‐depth on‐the‐ground, long‐
term microclimate monitoring along climatic gradients to be able to 
improve our microclimatic models for use in SDMs (Lembrechts, Nijs, 
& Lenoir, 2019). Nevertheless, our case study suggests that SDMs 
can be relatively robust to several characteristics of different types 
of climate datasets, such as spatial and temporal resolution, espe‐
cially in the relatively stable, slow‐reacting vegetation types of high‐
latitudinal mountains. Additionally, there is a need to improve our 
abilities to forecast microclimate data in the future, because climate 
change is likely to affect soil, surface and air temperatures differ‐
ently (Ashcroft & Gollan, 2013; De Frenne et al., 2019). Significant 
progress has been made in this regard; for example, by integrating 
microclimatic dynamics and processes such as microclimatic buff‐
ering in predictions (Keppel et al., 2015; Lenoir et al., 2017; Wason, 

F I G U R E  6  Proportion of explained variance (marginal R2) by species distribution models (SDMs) using the different temperature 
datasets. (a) Boxplots of the marginal R2 of distribution models for 50 plant species in a subset of 59 plots, based on binomial generalized 
linear mixed‐effect models (GLMMs) built with the different temperature datasets: using Bio1, Bio10 and Bio11 together (left, “Full”) or 
Bio1 only (right, “Bio1”). (b) Differences in marginal R2 between the models using soil temperature and all other datasets for forbs (n = 25), 
graminoids (n = 7), (dwarf) shrubs (n = 15) and trees (n = 3). (c) Heatmaps visualizing the differences in marginal R2 between the models using 
soil temperature and each of the other climatic datasets for the different growth forms. Green (positive values) indicates better performance 
of soil temperature models, blue a better performance of the other dataset in question. “*” and “▪” respectively indicate significant (p < .05) 
and marginally significant (.05 < p < .1) differences from zero as obtained with Student’s two‐tailed t‐test
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Bevilacqua, & Dovciak, 2017), but there is still a need for improve‐
ment before the same diversity and quality of climate datasets will 
be available for SDM projections into future climate as we have now 
for current climate.
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