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A B S T R A C T

Chile’s temperate forest is a global biodiversity hotspot. An upsurge in alien forest plantations has disturbed and
fragmented the landscape, promoting biological invasions. The invasion process is not fully understood since
monitoring large and inaccessible areas can be prohibitively expensive and logistically challenging using field-
based methods alone. Here, a remote sensing approach using Sentinel-2 satellite imagery, fragmentation ana-
lysis, and random forest modelling is applied to detect alien tree stands and describe their extent in relation to
fragmentation and landscape structure in study areas around Malalcahuello National Reserve and Villarrica
National Park. Detailed vegetation maps are produced, with classification accuracies> 81% and including four
forest classes, two native and two alien. An altitudinal pattern was observed in both sites. At lower altitudes,
there was greater total area covered by alien trees and more fragmented native forests than at higher altitudes.
However, Villarrica had less alien tree cover than Malalcahuello, but was a more fragmented landscape. Random
forest modelling identified that alien pine tree mean patch area was positively correlated with both land cover
diversity and Araucaria araucana forest mean patch area in both sites. Given their conservation and cultural
relevance, the locations of protected areas need reconsidering to strengthen the protection of A. araucana, which
could be outcompeted by alien trees in a context of increasing productive forestry. This is especially urgent in
Villarrica, where protected areas already have a substantial presence of alien trees, with most A. araucana found
outside protected areas.

1. Introduction

Temperate forests are the least abundant of the world’s woodland
biomes; however they are affected by high rates of annual forest loss
(Echeverría et al., 2006; Hansen et al., 2010), land use change (Ellis,
2011) and are increasingly threatened by the invasion of alien trees
(Essl et al., 2011; Richardson and Rejmánek, 2011) and herbaceous
plants (Wavrek et al., 2017). Over half of the temperate forests in the
southern hemisphere occur in Chile (Donoso, cited in Miranda et al.,
2015, p. 21). Chile itself is considered a global biodiversity hotspot
(Myers et al., 2000). The annual rate of native forest loss in Chile was
0.3% between 1986 and 2011 (Heilmayr et al., 2016), and the Chilean
biodiversity hotspot only retains 30% of its original native vegetation
cover (Myers et al., 2000).

The Chilean Valdivian temperate forest ecoregion is located be-
tween the biogeographical barriers of the Andes and the Pacific Ocean
(Altamirano and Lara, 2010), from 35° to 48° south latitude (Smith,
2002), at altitudes ranging between 1000 and 3000 m (Smith, 2002).
This wide latitudinal range results in large variations in temperature
and rainfall within the ecoregion (Smith, 2002). Having evolved in
isolation, this region has very specific flora and it is sensitive to species
introduction (Alpert et al., 2000). Particularly, the endemic tree Arau-
caria araucana (monkey puzzle) is classified as endangered in the IUCN
Red List of Threatened Species due to its decreasing population
(Premoli et al., 2013). Additionally, A. araucana is considered a Natural
Monument by Chilean law, recognising its cultural value and forbidding
felling unless in exceptional cases (Chilean Ministry of Agriculture,
1990).
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Significant land use change has occurred in the Valdivian temperate
forests since the 1970 s, with large-scale expansion of alien plantations
in recent years (Miranda et al., 2015). Deforestation and forest de-
gradation, and subsequent fragmentation, have been ongoing processes
(Echeverría et al., 2012; Miranda et al., 2015), with forest loss rates
reaching 4.5% per year in some areas (Echeverría et al., 2006). This
continuous human disturbance makes the landscape more vulnerable to
biological invasions (Giorgis et al., 2016; León Cordero et al., 2016;
Pauchard et al., 2016). As Chilean temperate forests are disturbed and
considered vulnerable to invasion (Arroyo et al., cited in Pauchard
et al., 2004: 255, Early et al., 2016), research on this process has been
growing in recent years (Quiroz et al., 2009), after historically being an

understudied topic in South America (Speziale et al., 2012).
Forestry is the second main reason for introduction of woody plants,

after horticulture (Richardson and Rejmánek, 2011). Among 443 forest
plants that can become invasive worldwide, 292 are typical of com-
mercial forest plantations, mostly belonging to the Leguminosae, Pina-
ceae, Myrtaceae, Rosaceae, and Salicaceae families (Haysom and
Murphy, cited in Dodet and Collet, 2012: 1766). Several tree species
planted commercially are considered invasive or potentially invasive in
Chile (Bustamante and Castor, 1998; Echeverría et al., 2007; Teillier
et al., 2003) and around the world (Dzikiti et al., 2016; Pauchard and
Alaback, 2004; Peña et al., 2008). The spread of propagules from alien
forest plantations to surrounding native forests has been documented

Fig. 1. Location of the Malalcahuello and Villarrica study sites and protected areas.
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(Peña et al., 2008), with competition from alien saplings threatening
the regeneration of endangered native species such as A. araucana
(Pauchard et al., 2014). Prompt, targeted management is fundamental
to controlling these tree invasions (Pauchard et al., 2016). The scale
and topography of Chile’s forested areas, however, pose challenges for
ground-based monitoring, as it is costly and resource intensive.

Although alien tree spread and invasions are a cause of concern
across biomes of the world, detecting alien trees in temperate forests is
particularly difficult, especially when compared to other open treeless
ecosystems. In many regions, similar large-scale afforestation poses an
invasion risk, but lack of awareness and resources has made the as-
sessment of the extent of such invasion processes very difficult. Under
such a scenario, remote sensing is an obvious alternative, holding sig-
nificant potential for large scale alien tree detection and mapping. It
offers an affordable method of forest monitoring over large areas, with
frequent temporal data acquisition at a variety of spatial and spectral
resolutions including cost-free medium spatial resolution multispectral
satellite imagery. This imagery can help producing quantitative in-
formation on alien tree spread at large scale in a simple and cost-ef-
fective way, being an invaluable tool for designing new conservation
strategies for temperate forests not only in Chile, but also globally.

Specifically, the European Space Agency (ESA) Sentinel-2 satellites
offer regular (every five days at the equator) medium resolution,
spectrally rich data acquisition over broad areas (290 km swath width).
Sentinel-2 has been used previously to detect alien shrubs in South
Africa, Spain and Chile (Calleja et al., 2019; Ndlovu et al., 2018). Ad-
ditionally, Sentinel-2 has been shown to have the potential to dis-
criminate alien plants from native plants with a similar morphological
structure (Tesfamichael et al., 2018).

The main aim of this study is to detect alien trees using satellite
remote sensing and describe their degree of occupancy in relation to
fragmentation indices and landscape parameters in Chile’s temperate
forest ecosystem. The specific objectives are: (1) identify and map these
alien tree stands and patches within the native forest matrix; (2) de-
scribe the spatial characteristics of forested areas using structural
landscape metrics; and (3) model the influence of landscape variables
on the presence and abundance (both as a result of plantation and in-
vasion) of alien trees from the Pinaceae family. Studying these species is
expected to shed light into how to detect and monitor alien tree pre-
sence inexpensively in temperate forests of the world where resources
are limited, and the scale of the alien tree presence and possible inva-
sion has not yet been fully determined.

2. Material and methods

2.1. Study areas

Two Valdivian temperate forest study areas were selected in the
south-central Chilean Andes within the Araucanía region (IX adminis-
trative region), offering a mosaic of similar land cover, and both in the
Andes and Andean foothills. Study area 1 (Fig. 1) comprises Malalca-
huello National Reserve and surrounds in the northern Araucanía re-
gion (−38° latitude), at altitudes from 500 to 2800 m. Study area 2
(Fig. 1) covers Villarrica National Park and surrounds in the southern
Araucanía (−39° latitude) at altitudes from 200 to 2800 m. Both study
areas are roughly 10000 km2. The Villarrica study area (42 inhabitants/
km2) is more densely populated than Malalcahuello (10 inhabitants/
km2) (Library of National Congress Chile, 2015). Economic activities in
Villarrica are predominantly touristic, while the principal economic
sectors in Malacahuello are farming and forestry (Library of National
Congress Chile, 2015). Both study sites contain a mosaic of protected
areas including National Reserves, National Parks, and UNESCO’s
(United Nations Educational, Scientific and Cultural Organization)
Biosphere Reserves. The native forest comprises various deciduous
Nothofagus spp. mixed with the evergreen Nothofagus dombeyi, Arau-
caria araucana and high mountain shrubs (Smith, 2002).

More than 10 alien coniferous species were introduced inside the
Malalcahuello National Reserve during 1969 and 1970, posing a threat
to the endangered A. araucana (Peña et al., 2008). Test plantations of
conifers, Eucalyptus spp. and other alien species started in 1950 within
the Villarrica study area (Kunstmann, 1965; von Buch, 1965).

Although Malalcahuello and Villarrica have differences in land uses
and dates of introduction of the first alien tree species, they are geo-
graphically close without a hard boundary between them. Their char-
acteristics change gradually, along a gradient. Consequently, the areas
have a slight overlap (Fig. 1) that accounts for this gradient.

Both sites can be divided in two subsets based on altitude. The lower
altitude subsets are in valley areas (< 600 m elevation), while the
higher altitude (> 600 m) subset corresponds to the Andes and Andean
foothills. The valleys are typically more influenced by human activity
than the Andes and contain the major urbanised and agricultural areas.

2.2. Study species

Two categories of alien trees were selected for this study. These
were coniferous trees from the Pinaceae family (Pinus radiata, Pinus
contorta, Pinus ponderosa, Pinus sylvestris and Pseudotsuga menziesii), and
broadleaved trees from the Eucalyptus genus (Eucalyptus globulus and
Eucalyptus nitens). Both are widely used in commercial forest planta-
tions in Chile. These species are highly productive, establish easily,
have fast growth rates and most exhibit low shadow tolerance, char-
acteristics common in many invasive species (Dodet and Collet, 2012).

Invasion is highly dependent on the ecology and growth form of the
alien plants and their positive or negative interactions with the struc-
ture and the characteristics of the ecosystem (Giorgis et al., 2016). For
this reason, focusing on functional groups rather than individual species
is more appropriate for this study, as the species from each group (Pi-
naceae and Eucalyptus spp.) share ecological characteristics and growth
form.

Pinaceae are heliophytes (adapted to grow in full sun) with very
high recruitment rates, tending to create closed canopies where there
were previously open areas. Most Pinaceae species used in plantations
are invasive and listed by the IUCN (International Union for
Conservation of Nature) in the Global Invasive Species Database (IUCN
Invasive Species Specialist Group, 2006; Nuñez et al., 2017). For ex-
ample, Pinus contorta has started colonizing treeless steppes in Pata-
gonia (Langdon et al., 2010; Pauchard et al., 2016), and is reported as
spreading to the naturally open A. araucana forests in Malalcahuello
(Peña et al., 2008), potentially resulting in canopy closure and pre-
venting A. araucana regeneration (Pauchard et al., 2014). In addition,
Pinus radiata has been identified as an invasion threat for the native
forest in Australia (Calviño-Cancela and van Etten, 2018). Of the Pi-
naceae group studied here, the only relatively shade tolerant species is
Pseudotsuga menziesii, which can regenerate under the forest canopy,
especially if it has been thinned (Pauchard et al., 2008; Peña and
Langdon, 2007). Nonetheless, it has been included in the Pinaceae
group class due to technical limitations. The species of the Pinaceae
family, including Pseudotsuga menziesii, have very similar spectral sig-
natures and cannot be separated accurately using spectral remote sen-
sing methodologies.

Eucalyptus spp., a group of very fast growing heliophytes, are not
formally listed as invasive species. This genus is not well adapted to the
cold winters of this area (Geldres and Schlatter, 2004), however they
are planted widely in Chile, raising concerns about their role in land-
scape change and native forest loss in numerous studies (Altamirano
et al., 2013; Echeverría et al., 2012; Heilmayr et al., 2016).

2.3. Data sources

Medium spatial resolution multispectral Sentinel-2 level-1C imagery
(Fig. 1) was used to perform the land cover mapping in this study.
Sentinel-2 (comprising two satellites: Sentinel-2a and 2b) captures
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imagery at 10 to 60 m spatial resolution in 13 spectral bands every five
days at the equator. Its spectral capabilities include four visible and
near-infrared bands (10 m resolution), six red-edge and shortwave-in-
frared bands (20 m) and three atmospheric and coastal aerosol bands
(60 m) (Drusch et al., 2012). The four red edge bands are especially
useful for vegetation monitoring (ESA, 2016) as this part of the elec-
tromagnetic spectrum captures a very abrupt increase in reflectance of
plants (Gitelson and Merzlyak, 1996). Rich data acquisition in the red
edge section of the spectrum strengthens the capabilities of Sentinel-2
to separate vegetation and other land cover types, making it a well-
suited sensor for this application.

Four Sentinel-2 images were analysed in this study (Fig. 1), acquired
from the Copernicus Open Access Hub (ESA, 2014). For each study
area, imagery was acquired in both summer and winter seasons (Mal-
cahuello summer image: 30/11/2016, winter image: 19/05/2017;
Villarrica summer image: 30/11/2016, winter image 26/05/2017).
This multi-season approach was used because it is expected to improve
the classification accuracy due to the phenology of the species, which
changes their reflectance throughout the year. This approach was de-
monstrated to improve land cover classification previously (Langley
et al., 2001). Additionally, the 30 m resolution ASTER (Advanced
Spaceborne Thermal Emission and Reflection Radiometer) Global Di-
gital Elevation Map Version 2 (ASTER GDEM Validation Team et al.,
2011) was utilised in the classifications as some species distributions
are expected to exhibit an altitudinal pattern.

Training and validation datasets for the classifications were ac-
quired from a combination of sources. Firstly, field data were collected
during two field campaigns in June-July 2017 and January-February
2018. During these campaigns, land cover surveys were conducted
across each study site. The abrupt topography and forest structure made
access to certain areas challenging; therefore, data collection locations
were limited to areas accessible by car or on foot. Although this ap-
proach influenced the extent to which survey locations were fully
random, a variety of land cover types were surveyed within the logis-
tical constraints of the study area with 146 points surveyed in
Malalcahuello, and 132 in Villarrica. At each point, the data collected
included: GPS location, qualitative description of the site; list of the tree
and shrub species (both native and alien) present in a 5 m radius cir-
cular plot from the point; cardinal photographs (looking north, east,
south, west from the survey location); and, for some locations, addi-
tional upwards photos showing forest canopy cover/stand density.
Additional photos of features of interest in and around the survey points
were also taken. Roughly, 10% of the field data was used for training
the classifier, and 90% for accuracy assessment for each study site.

To supplement the field data, further reference information was
extracted from the following sources: (1) the GPS recorded field photos,

(2) a pre-existing 30 m resolution land cover map of Chile created in
2014 with an overall accuracy of 80% (Zhao et al., 2016); and (3) from
the vegetation cadastre created by the Chilean National Forest Cor-
poration (CONAF) for management and national statistics purposes
(Corporación Nacional Forestal, 2017) with 0.5 ha minimum mapping
unit and dating from 2013 or 2008, depending on area. The 2014 land
cover map and the CONAF’s cadastre were only used to train the clas-
sifier if both data sources consistently identified the same land cover
class for a particular point location. Very High Resolution (VHR) sa-
tellite imagery of the study areas (Heilmayr et al., 2016), together with
WorldView 3 imagery, were used to complement the reference data.

Finally, to derive additional variables for modelling the distribution
of the alien species, road locations were extracted from the Chilean
Ministry of Public Works (MOP) website, rivers and lakes locations
from that of the Chilean General Directorate of Waters (DGA), and
number of forest fires between 2015 and 2017 from CONAF.

2.4. Image pre-processing

Layer stacking was performed separately for each summer and
winter image for both study areas, creating four 10-band multispectral
data sets with 10 m pixel size (the atmospheric and coastal aerosol
bands were excluded). Cloud and cloud shadow masking was performed
on each image using histogram thresholding. The cloud/shadow masks
from both summer and winter images for the respective sites were
merged, with this merged mask used to exclude all corresponding areas
of the composited images from further analysis. For each study area, a
20-band multi-season composite image (comprising both summer and
winter images) was then created; with a further composite in-
corporating the 20-band composite plus the ASTER elevation layer.
Further radiometric or atmospheric correction was not necessary since
this study does not compare spectral pixel values directly over time
(Bakr et al., 2010; Lin et al., 2015; Song et al., 2001). Rather, analysis
involves thematic land cover classifications (comprising discrete class
values rather than continuous spectral values), each of which is in-
dependently accuracy assessed. Previous studies involving land cover
classifications have successfully followed this approach (Kamlun et al.,
2016; Pekkarinen et al., 2009).

2.5. Land cover classification

The classification system (Table 1) was designed to provide se-
paration of the different types of alien and native forests. It comprised
10 land cover classes, including six discrete vegetated classes. The
classification was designed using the FAO (Food and Agriculture Or-
ganization) land cover classification system (Di Gregorio and Jansen,

Table 1
Land cover class nomenclature, abbreviations and class descriptions.

Land cover class Class description

Alien tree stands Coniferous plantations and invasion (CP) Pinaceae family (Pinus radiata, Pinus contorta, Pinus ponderosa, Pinus sylvestris, Pseudotsuga menziesii)
Broadleaved plantations and invasion (BP) Eucalyptus genus (E. globulus and E. nitens)

Native forests Native Nothofagus spp. (broadleaved) forests
(NNF)

Nothofagus spp. or laurel forests (Laureliopsis philippiana, Aextoxicon punctatum, Eucryphia cordifolia,
Caldcluvia paniculata, Weinmannia trichosperma, etc.)

Native Araucaria araucana (mixed coniferous-
broadleaved) forest (ANF)

Patagonian forests (Nothofagus spp. mixed with A. araucana and high mountain shrubs).

Shrubs Chusquea culeou mixed with Holcus lanatus, Rosa moschata, Rubus ulmifolius or other, less common shrubs.
Also, large shrubs (or very small trees) such as Aristotelia chilensis, Ovidia pillopillo. Sometimes including
smaller size, stunted Nothofagus spp. individuals.

Grassland Agricultural grasslands or livestock grazing plots dominated by Holcus lanatus, Agrostis alba, Nothofagus
obliqua and Luma apiculate. Also, high areas dominated by mountain flora.

Water Permanent water bodies including lakes and rivers.
Bare Rocky outcrops, bare soils in rotation agricultural grassland, sandy lake beaches or high mountain areas

above the limit of vegetation.
Snow Permanent and seasonal snow.
Urban Cities, smaller urban settlements, or impervious surfaces such as asphalt, concrete and roof materials.
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2005), and the classification scheme used in the 2014 Chile land cover
map (Zhao et al., 2016) as basic guidelines, with adaptations for this
study.

For each study site, land cover classification was conducted sepa-
rately on the four different image data sets: the 10-band summer image,
the 10-band winter image, the 20-band multi-season composite image
and the multi-season + a digital elevation model (DEM) composite
image. Classification was conducted using a random forest classifier
(Breiman, 2001) in R (R Development Core Team, 2011) using the
randomForest package (Liaw and Wiener, 2002). Random forests are a
machine learning algorithm that work as an ensemble model. This
means that it uses the results from numerous different models to cal-
culate a result that will be more accurate than the result of any of the
separate models (Horning, 2010; Rodriguez-Galiano et al., 2012). This
ensemble model classifies land covers accurately (Marston and
Giraudoux, 2019; Müllerová et al., 2017; Rodriguez-Galiano et al.,
2012), and is well established for classifying multispectral imagery
(Rodriguez-Galiano et al., 2012). Random forests have been used pre-
viously to detect invasive plant species by Naidoo et al. (2012) with
87.68% accuracy, Peerbhay et al. (2016) with 91.33%, 85.08%, and
67.90% accuracy, and Müllerová et al. (2017) with 60% to 100% ac-
curacy depending on the case. Immitzer, Atzberger and Koukal (2012)
used random forests to measure tree species diversity, identifying ten
different woody species in a temperate forest of the northern hemi-
sphere.

The random forest classifier was trained using the reference data
outlined in Section 2.3. The training dataset included 491 training
polygons for Malalcahuello and 439 for Villarrica. This algorithm can
generate an out-of-bag (OOB) internal accuracy assessment using part
of the input reference data (Horning, 2010), but it tends to overestimate
the accuracy when working with geographical data (Cánovas-García
et al., 2017). For this reason, an independent accuracy assessment was
performed by comparing a sample of classified points against reference
data (outlined in Section 2.3) to construct a confusion matrix. The va-
lidation dataset had 542 points for Malalcahuello and 469 for Villarrica.

2.6. Landscape metrics

To quantitatively assess whether the occurrence and prominence of
alien invasive species are linked to specific landscape structural char-
acteristics, in particular fragmentation, landscape metrics were calcu-
lated from the land cover classifications using Fragstats 4.2 (McGarigal
et al., 2002). These metrics measure the geometric spatial configuration
and aggregation of the patches in a landscape (McGarigal, 2014). It is
possible to quantify numerous landscape metrics for a given area, but
many metrics are co-correlated and thus redundant. Therefore, certain
targeted landscape metrics were selected, based on applications in
previous literature to best describe land cover spatial configuration
patterns relevant to vegetation studies, and on their robustness to assess
fragmentation. Ideally, a robust fragmentation index needs to be cor-
related with aggregation and as independent as possible of class area
(Neel et al., 2004). Although a larger class area would normally mean a
better-connected class, if the metric was too dependent on class area,
the connectivity of the less widespread habitats would be under-
estimated, even though they were not markedly fragmented.

The class level landscape metrics (table 2) calculated were the patch
density, the mean patch area, the largest patch index, the perimeter
area fractal dimension and the clumpiness index. They were all calcu-
lated for each vegetated land cover: Nothofagus spp. native forest,
Araucaria spp. native forest, shrubs and grasslands. Two landscape level
metrics (Table 2) were also included: the aggregation index and the
Shannon’s diversity index.

Given the considerable variability in biogeographical and topo-
graphical characteristics across the study areas, it is inappropriate to
generate global landscape metric values as this ‘global study area’ ap-
proach incorporating both highly managed and more natural

landscapes, may conceal important localised patterns (Miranda et al.,
2015). Hence, a series of subset locations within the overall study areas
were selected, with landscape metric values calculated individually for
each subset. This enables both local scale relationships to be assessed,
as well as broader patterns for each study site by pooling sub-site re-
sults. There is a natural divide between lower altitude areas that are
more actively managed including alien species plantations and agri-
culture, and less impacted higher altitude areas including protected
areas, where invasion has also been recorded (Pauchard et al., 2014;
Peña et al., 2008). The boundary dividing the lower and higher altitude
subsets for each study area is 600 m elevation, with this being the
minimum altitude at which A. araucana can thrive (Premoli et al.,
2013). To ensure that both subsets are accurately represented, a sys-
tematic sampling approach was taken using a regularly spaced buffered
point grid. The sampling buffers were 19 km2 circular plots. This size is
a compromise between achieving a meaningful sample size (> 100 in
each site) and a large enough buffer to capture the landscape hetero-
geneity. This type of sampling strategy has been previously used in
large scale landscape studies (Gonzalez-Abraham et al., 2007;
McGarigal et al., 2009). Each point and sampling buffer were identified
as either in the low (valley subset) or high (Andes subset) altitude areas
using a 30 m ASTER digital elevation model. Additionally, a targeted
set of sampling buffers were created inside the protected areas to ensure
that these areas, which constitute a small proportion of the overall
study areas, were represented. For Malalcahuello, 104 sampling buffers
were located in the low altitude subset, 64 in the high altitude subset
and 18 inside protected areas. For Villarrica, 75 were at low altitude,
126 at high altitude and 48 inside protected areas. The minimum patch
size considered was 100 m2, with the intention of capturing the earliest
stages of invasion possible at this resolution. However, it is important to
mention that, at this medium resolution, the predominant alien tree
stand detection will be plantation, especially in the case of larger pat-
ches and in easily accessible areas.

2.7. Modelling

To better understand the influence of fragmentation (represented by
the landscape metrics) and other landscape variables (topographical,
hydrological and related to human influence) on the presence and
abundance of alien trees, random forests were used in a regression
capacity to identify the respective importance of the variables driving
the distribution of alien tree cover. This is key for forestry and con-
servation management in areas susceptible to invasion, as the presence
of alien tree patches is a source of propagule pressure, increasing the
risk of invasion (Gundale et al., 2014). The random forest algorithm is
especially useful for large and complex datasets (Cutler et al., 2007),
and is robust to outliers, noise and over-fitting (Breiman, 2001).
Random forest analysis was performed for each study area, with mean
patch area (AREA_MN) of coniferous alien tree stands (CP) as the re-
sponse variable. The 27 explanatory variables were derived from the
landscape metrics, the land cover map, topography, hydrology and
human activity.

Broadleaved alien trees (BP) were neither modelled nor included as
explanatory variables for the following reasons: (1) there is not enough
area of this land cover class to guarantee a reliable model; (2) they are
not good competitors in this climate (Geldres and Schlatter, 2004); and
(3) they are not listed as invasive by the International Union for Con-
servation of Nature (IUCN Invasive Species Specialist Group, 2006).

The explanatory variables based on the landscape metrics and the
land cover map relate to fragmentation of native vegetated covers,
which has been reported as correlated with biological invasions
(Arellano-Cataldo and Smith-Ramírez, 2016; León Cordero et al., 2016;
Tella et al., 2016). The explanatory variables based on the land cover
map were the proportion of Nothofagus spp. native forest area, the
proportion of native A. araucana forest area, the proportion of shrubs
area, the proportion of grasslands area and distance to other coniferous
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alien patches. The proportions were calculated for each sampling buffer
using the land cover map previously created and the Geospatial Mod-
elling Environment software package (Beyer, 2012). The distance to
other coniferous alien patches was calculated as the Euclidean distance
from the centre of the sampling buffer to the nearest coniferous alien
patch.

The topography (elevation, slope and aspect at buffer centre-point)
and hydrology (Euclidean distance to rivers and lakes from buffer
centre-point) determine microclimatic conditions potentially limiting
the presence of alien species. The location of these water features was
provided by the Chilean General Directorate of Waters. Finally, ex-
planatory variables related to human activity were distance to roads,
distance to urban areas, and number of forest fires between 2015 and
2017. Road locations were provided by the Chilean Ministry of Public
Works, urban area locations derived from the land cover map, and
forest fire frequency was provided by the Chilean National Forest
Corporation. Distances to roads and urban areas were calculated as the
Euclidean distance from the centre of the sampling buffer to the nearest
road or urban patch. Although forest fires can occur naturally, the
majority start as a result of human negligence near roads, paths or
agricultural areas. The frequency of forest fires was calculated as the
number of fires that occurred inside a sampling buffer between 2015
and 2017.

To achieve a parsimonious model, a nested iterative method known
as recursive feature elimination was applied. At the end of each random
forest run, a fixed proportion (in this case, 10%) of the variables of
lowest importance are removed before running the model again. The
lowest importance variables are those that have the smallest impact on
the mean square error (MSE) when removed (those with the smallest
OOB percentage of increment in MSE). This iterative process continues
for as long as the OOB errors keep decreasing. Once the iterations are
complete, the set of variables with the smallest OOB error is selected
(Díaz-Uriarte and Alvarez de Andrés, 2006; Genuer et al., 2010). The
final model comprises the set of explanatory variables with the smallest
OOB error, with these explanatory variables ranked in order of

influence on the response variable. Finally, partial dependence plots
were generated for each variable, to illustrate the nature of the re-
lationships present (Marston and Giraudoux, 2019).

3. Results

3.1. Land cover classification

Four land cover classifications were produced for each study area,
corresponding to the winter image, the summer image, the multi-season
composite, and the multi-season composite plus DEM. The overall ac-
curacies for the Malalcahuello classifications were 0.69, 0.77, 0.78 and
0.81 respectively. For Villarrica, classification accuracies were 0.75,
0.82, 0.85 and 0.86 respectively. As expected, the highest accuracies
were achieved for the multi-season plus DEM composite, as it contains
additional information to train the classifier. The summer classification
accuracies were higher than those of the winter classification, likely due
to the spectral variability between land cover types being less acute in
winter as a result of senescing vegetation. Table 3 shows the accuracies
for all land cover classes for each composite. The full confusion matrices
can be found in the Appendix A. Both study areas had extremely high
accuracies for the water, urban, bare and snow classes, as those are very
spectrally distinct from the remaining classes. The alien tree stands
were generally accurately mapped at both sites, except for broadleaved
plantations in Villarrica. This low accuracy was expected, as broad-
leaved plantations are scarcer in Villarrica than Malalcahuello, limiting
the quality of the training data for this class. The native woody classes
(Nothofagus spp. native forests, araucaria native forests and shrubs),
although essentially different types of vegetated areas, have a certain
degree of similarity because all three include Nothofagus spp. in their
biological assemblages. This resulted in a degree of confusion among
them. However, this confusion is not a principal concern for this study,
as the three classes constitute variations of the Chilean Valdivian
temperate forest, and they are well separated from the alien tree stands
in the land cover maps.

Table 2
Landscape metrics calculated in this study and metric descriptions.

Landscape metrics Abbreviation Description

Class level (calculated for a specific land
cover class)

Patch density PD PD is the number of patches of a class divided by the whole area of the landscape
(McGarigal, 2014). This has been previously used in this environment by several authors
(Altamirano et al., 2013; Echeverría et al., 2012, 2008; Molina et al., 2016).

Mean patch area AREA_MN AREA_MN calculates the sum of the total area of all the patches of a class, divided by the
number of patches (McGarigal, 2014). This has been used before for fragmentation studies
in Chile by Hernández et al. (2016).

Largest patch index LPI LPI is a metric that calculates dominance as the percentage of the total area of the landscape
that is comprised by the largest patch of the class (McGarigal, 2014). This has been selected
based on previous uses in studies in the south-central Chilean temperate forests (Altamirano
et al., 2013; Echeverría et al., 2012; Molina et al., 2016).

Perimeter area fractal
dimension

PAFRAC PAFRAC informs about the shape complexity of the patches, whatever their extent
(McGarigal, 2014). It is calculated as 2 divided by the slope of the regression line of the
logarithm of patch area (m2) against the logarithm of patch perimeter (m) (McGarigal,
2014). A Euclidean geometry has a value of 1, increasing gradually towards 2 as the
perimeter gets more convoluted (McGarigal, 2014). It is correlated with aggregation and not
very correlated with habitat abundance (Neel et al., 2004; Wang et al., 2014). For class areas
between 5% and 80%, PAFRAC is independent to changes in area (Neel et al., 2004).

Clumpiness index CLUMPY CLUMPY is a measure of aggregation. It is the proportional deviation of the proportion of
like class adjacencies involving from what would be expected under a spatially random
distribution (McGarigal, 2014). It ranges between −1 for maximum disaggregation, and 1
for maximum aggregation. A value of 0 means a random distribution (McGarigal, 2014).

Landscape level (calculated for the total
patches in the landscape)

Aggregation index AI AI shows the percent of like cell adjacencies (McGarigal, 2014). This metric has a value of 0
for a maximally disaggregated landscape (McGarigal, 2014). This has been used in previous
deforestation studies in Chile (Echeverría et al., 2006).

Shannon’s diversity
index

SHDI SHDI is calculated using the following formula, where Pi is the proportion of each class:

= − ∑ ∗=SHDI P P( ln )i
m

i i1 (McGarigal, 2014). SHDI is used here as a measure of land cover
diversity. It has a value of 0 for landscapes made of only one class and increases as class
richness increases (McGarigal, 2014). A closely related diversity index has been previously
used in Chile by Molina et al. (2016).
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Figs. 2 and 3 show the land cover maps generated using multi-
season + DEM composite classification, the most accurate approach
(highest overall accuracy), for Malalcahuello and Villarrica respec-
tively. These land cover classifications were used in the next steps of
this study for the landscape analysis and the modelling of Pinaceae area.

Table 4 shows the vegetated land cover class areas for the multi-
season with DEM classifications for the two study areas and their dif-
ferent subsets: the lower altitude subset (valley, below 600 m) and the
high altitude subset (Andes, above 600 m). Protected areas are all
within the Andes subset, but are presented separately as well due to
their conservation status.

In Malalcahuello, 343 km2 are covered by coniferous alien trees,
while 556 km2 are broadleaved alien trees (Table 4). These alien tree
stands are located mostly in the north-west of the study area, at lower
altitudes and outside national park boundaries. However, some medium
sized, irregular coniferous alien patches are observed inside the Ma-
lalcahuello National Park, covering 4 km2 in the east of the study area.
These patches are embedded in a mix of shrubs and A. araucana forest
patches. These land cover classes are naturally open, being an ideal
environment for alien pine trees to spread (Ledgard, 2001; Taylor et al.,
2016). Native Nothofagus spp. forests were distributed throughout the
study area, although there is a clearer dominance of these land covers
to the centre and east of this area, where altitude increases. At high
altitudes (> 600 m), the dominant native forests are Nothofagus spp.
(NNF) and A. araucana (ANF). In fact, in the high altitude area the
presence of alien trees is restricted to 75 km2 for coniferous alien spe-
cies, and 81 km2 for broadleaved alien species. A. araucana forests were
restricted to the eastern part of the study area, at the highest altitudes.

Villarrica has a smaller overall area covered by alien trees, with
236 km2 covered by coniferous alien species, and 143 km2 covered by
broadleaved alien species (Table 4). Of this, 147 km2 of coniferous and
112 km2 of broadleaved are located in lower altitude areas, to the
western part of the study site. A considerable amount of coniferous
alien patches is, however, located inside the boundaries of the Villarrica
National Reserve and a UNESCO Biosphere Reserve to the south of the
study area, diminishing their conservation value. This agrees with the
findings of Altamirano et al. (2010) about other protected areas else-
where in Chile. In fact, 82 km2 of coniferous alien tree cover and
23 km2 of broadleaved alien tree cover are located within the bound-
aries of protected areas in this study. Broadleaved alien trees are pri-
marily located in the north-west of the study area. The A. araucana
native forests are primarily located to the east and at the highest alti-
tudes, with Nothofagus spp. forests occurring mostly in the centre of the
site and covering a large area.

3.2. Landscape metrics

Table 5 summarizes the results obtained in the landscape metric
assessment of the thematic land cover maps. Full detail of the landscape
metrics results can be found in the Appendix B.

Both study sites exhibit similar altitudinal patterns, with higher
patch density, clumpiness index and dominance (LPI) of alien species in
the valley area than in the Andes. This was expected, as accessibility
plays a major role when establishing new productive plantations. In
addition, eucalyptus trees cannot tolerate the harsh mountain winters
of the Andes, being restricted to lower altitudes in this environment.
Alien patch density is the highest within protected areas in the
Villarrica site. This is concerning, as it could diminish the conservation
value of these protected areas. This is not the case in Malalcahuello’s
protected areas, which show the lowest patch densities for alien species
overall.

Like alien tree stands, native forests also show an altitudinal pat-
tern. Both sites have slightly higher patch density of native Nothofagus
spp. forests (NNF) in the valleys. Nothofagus spp. forests include a range
of species of this genus, some of them able to reach medium–high
mountain conditions, but also are a very common class in lowland
areas. In these lowland areas, they are found as hedgerows in agri-
cultural areas, as plantation for firewood for the local communities or
as relict patches of native forests among other land uses. A. araucana
native forests (ANF), on the other hand, are restricted to higher alti-
tudes, and the PD results are consistent, being much higher in the Andes
areas of both study sites. Malalcahuello’s protected areas have the
greatest PD for ANF overall in that study area. However, Villarrica has
the highest density of the endangered A. araucana forest in the Andes
subset, not specifically inside the protected areas. This, together with
the fact that there are coniferous alien tree patches inside, suggests that
the protected areas in Villarrica may be ineffective for A. araucana
native forest conservation.

Alien tree classes, both coniferous (CP) and broadleaved (BP)
plantations, have higher patch densities (PD) in Villarrica. However,
their mean patch area (AREA_MN) and largest patch index (LPI) are
higher in Malalcahuello. This means that Villarrica’s alien populations
are more fragmented and scattered than those of Malalcahuello. This is
further confirmed by the clumpiness index (CLUMPY), a measure of
aggregation, which is lower in Villarrica. The distribution of patch
density data (Appendix B, Fig. B1) shows that, even though the mean
patch density (Table 5) of Villarrica is higher for most land cover
classes, its values vary considerably, indicating that while some parts
had very few patches, others had a complex mix of land covers.

The native forest classes have higher patch densities but less

Table 3
Land cover classification accuracies calculated using confusion matrices for the different image data composites. The following abbreviations are used:
CP = coniferous plantations and invasion, BP = broadleaved plantations and invasion, NNF = Nothofagus spp. native forests, ANF = Araucaria araucana native
forests, winter = winter composite, summer = summer composite, multi. = multi-season composite, multi. + DEM = multi-season with DEM composite,
P = producer’s accuracy and U = user’s accuracy.

Land cover classes Malalcahuello Villarrica

Winter Summer Multi. Multi. + DEM Winter Summer Multi. Multi. + DEM

P U P U P U P U P U P U P U P U

CP 0.78 0.96 0.73 0.98 0.72 0.86 0.78 0.89 0.81 0.80 0.79 0.94 0.84 0.89 0.76 0.92
BP 0.81 0.88 0.77 0.90 0.74 0.85 0.77 0.9 0.60 0.56 0.73 0.55 0.67 0.63 0.73 0.46
NNF 0.70 0.40 0.84 0.46 0.92 0.51 0.86 0.58 0.79 0.69 0.88 0.82 0.89 0.82 0.85 0.83
ANF 0.35 0.60 0.45 0.73 0.42 0.75 0.60 0.77 0.37 0.57 0.51 0.72 0.54 0.70 0.66 0.82
Shrubs 0.43 0.33 0.81 0.56 0.77 0.61 0.68 0.53 0.44 0.30 0.94 0.55 0.79 0.57 0.81 0.58
Grass 0.57 0.86 0.76 1 0.83 0.98 0.81 1 0.67 0.98 0.75 1 0.80 0.99 0.88 1
Water 0.77 0.95 0.83 0.98 0.85 0.98 0.85 0.98 0.96 1 0.93 1 1 1 0.96 1
Bare 1 0.74 1 0.78 1 0.7 1 0.8 0.74 0.80 0.63 0.80 0.66 0.89 0.79 0.83
Snow 1 0.87 1 1 1 1 1 1 0.98 0.95 0.90 0.95 0.98 1 1 1
Urban 1 0.89 1 1 1 1 1 0.98 0.95 0.89 0.98 0.83 1 0.84 1 0.95
Overall accuracy 0.69 0.77 0.78 0.81 0.75 0.82 0.85 0.86
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aggregation (CLUMPY) in Villarrica, meaning that the native forest
cover is more fragmented. Malalcahuello had a larger mean patch area
of A. araucana forests and a smaller mean patch area of Nothofagus spp.
However, Villarrica’s larger area of NNF results from a series of large
outliers (Appendix B, Fig. B2), while Malalcahuello has a more con-
sistent normal distribution. The dominance metric (LPI) indicates that
the native Nothofagus spp. forest dominates in all subsets of the data. A.
araucana has high patch densities and low mean patch areas inside
protected areas in each study site. This is especially concerning, as it
means that A. araucana forest is fragmented inside protected areas.

Shrubs are a mixed class that comprises numerous native shrub
species, including some of the Nothofagus genus. This wide range of
species makes the class ubiquitous, having high patch densities in all
cases. Shrubs are associated to various land uses and form very different
spatial patterns depending on location. Both the Andes and the valley
subsets at both sites show a high PD of shrubs, but there is an obvious
structure where more patches are present in the valley. However, the
Andes have larger mean patch area of shrubs, more dominance (LPI)
and are more aggregated (CLUMPY). This is because high mountain
Nothofagus spp. have a shrub lifeform and, together with A. araucana,

Fig. 2. Land cover classification of Malalcahuello using the multi-season with DEM composite.
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are among the few woody species that can tolerate high mountain
conditions.

The perimeter-area fractal dimension (PAFRAC) does not show any
strong patterns, possibly influenced by the too coarse 10 m resolution of
the Sentinel-2 imagery and the subsampling approach.

A lower value of the landscape level metric aggregation index (AI) is
indicative of a more fragmented landscape mosaic. The results show

that Malalcahuello is a more aggregated (less fragmented) landscape
than Villarrica. For both sites, the maximum aggregation is achieved
inside protected areas, with the Andes subsets being more aggregated
than the corresponding Valley subsets. This is positive from a con-
servation perspective, as a more aggregated landscape means larger and
better connected habitats.

The landscape level metric Shannon’s diversity index (SHDI)

Fig. 3. Land cover classification of the Villarrica using the multi-season with DEM composite.
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indicates that lower altitude areas have a greater mix of land cover
classes in both sites. It is counterintuitive, however, that protected areas
have slightly more diversity than the Andes subsets for both sites, as
protected areas should have an abundance of native vegetated areas but
a small amount of alien classes, agricultural lands (grasslands) and built
up areas, consequently being less varied. This means that other land
cover types aside from native forests are in fact present in protected
areas, potentially being a source of disruption or an entryway for alien
species in protected areas. Overall, Malalcahuello shows a slightly more
diverse landscape than Villarrica.

3.3. Random forest modelling of Pinaceae

Random forest analysis established the relative importance of the
explanatory variables in relation to the mean patch area of coniferous
alien trees (Pinus spp. and Pseudotsuga menziesii). The stepwise removal
of explanatory variables (Section 2.7. modelling) resulted in a model for
Malalcahuello retaining 13 explanatory variables, and a model for
Villarrica comprising 27 variables (table 6).

Both models share the Shannon’s diversity index in the top quartile.
This is consistent with previous studies showing that landscape het-
erogeneity (Altamirano et al., 2016) and fragmentation (Arellano-
Cataldo and Smith-Ramírez, 2016; León Cordero et al., 2016; Tella
et al., 2016) play major roles in the invasion process. In both models,
elevation was among the top half of ranked variables. Elevation has
been previously reported as having a relation with invasive plant spe-
cies richness (Gassó et al., 2009; Pauchard and Alaback, 2004). Some of
the grassland metrics (largest patch index, mean patch area and pro-
portion) were also in the top half. More than half of the variables of the
simpler model (Malalcahuello) are among the top half most important
variables in Villarrica. These are the diversity index and the grassland
related metrics already mentioned, together with patch density of
shrubs and distance to nearest lake.

Notably, the variable ranked as being of highest importance in
Villarrica, distance to other pine patches, was eliminated during the
stepwise removal process when developing the Malalcahuello parsi-
monious model. Distance to seed sources (Richardson et al., 2000) and
propagule pressure (Gundale et al., 2014) are generally considered re-
levant to, and major drivers of, invasion in Chile (Altamirano et al.,
2016; Arellano-Cataldo and Smith-Ramírez, 2016; Pauchard et al.,
2016) and Argentina (Giorgis et al., 2016, 2011). At this resolution, it is
highly likely that a large proportion of the alien patches detected are a
result of plantation, rather than natural invasion, as at the 10 m spatial
resolution of Sentinel-2 it would not be possible to detect the small
patches at the initial stages of invasion. This way, the patterns of in-
vasion would be masked by the patterns of plantation, especially in the
case of Malalcahuello, where distance to seed sources is not present in
the model. Even though Malalcahuello and Villarrica are geo-
graphically very close, they exhibit different land uses. The presence of
distance to other Pinaceae stands (seed sources) as the most important
explanatory variable in the Villarrica model, could indicate that this
study site is being naturally invaded by these trees, even at this scale,
while the establishment of new pine tree stands in Malalcahuello is
mostly a result of human plantation.

Coniferous alien tree stands are of anthropogenic origin, being
planted for wood and fibre. Consequently, directly human related
variables like distance to roads and urbanised areas were expected to be
of high importance. However, none of these variables were present in
the Malalcahuello model, and in Villarrica, with only the distance to
roads among the top half. This could, again, be a scale related issue. The
roads dataset might not contain very narrow forest roads or seasonal
paths within forested areas. However, there could also be other more
important socio-economic drivers determining plantation locations of
new alien pines, such as land ownership, the possibility of other more
profitable activities in the area such as farming, or the availability of
suitable machinery and land access to establish plantations furtherTa
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away from accessible areas.
To illustrate the nature of the relationships between the explanatory

and response variable, a series of partial dependence plots were gen-
erated. Only plots demonstrating a high relative importance in the
random forest models and showing a meaningful relationship with the
mean area of Pinaceae are shown here, with the remaining partial de-
pendence plots presented in the Appendix C. The plot for the Shannon’s
diversity index (Fig. 4), which is a highly relevant variable in both
models (table 6) shows that as the mean patch area of alien pine trees in
both study areas increases, patch diversity also increases. Previous
models of invasion within Chile have shown comparable results
(Altamirano et al., 2016). Although both models show an increase in
area of coniferous alien trees with increasing landscape diversity, this
effect is much more marked in Malalcahuello. This may be a

consequence of the different predominant land uses in the two areas
(agriculture/forestry, and tourism), which have a direct impact on the
patchiness of the landscape. An increase in SHDI is a sign of a more
diverse and potentially fragmented landscape. These results were sup-
ported by the results of previous studies showing correlations between
invasive species and fragmentation (Arellano-Cataldo and Smith-
Ramírez, 2016; León Cordero et al., 2016; Tella et al., 2016).

Altitude was also expected to influence the distribution of alien
species, as it has been previously reported as having a negative corre-
lation with invasive plant species richness (Gassó et al., 2009; Pauchard
and Alaback, 2004). In addition, productive plantations are theoreti-
cally preferentially located in more easily accessible low and flat areas,
decreasing with altitude. This hypothesis was confirmed for Malalca-
huello (Fig. 4), where the main economic activities are related to

Table 5
Overall class level and landscape level metrics for each study area. The values are calculated as the mean of the subsamples (5 km diameter circular plots) within each
altitude subset. In the table, whole identifies the complete study area, valley corresponds to the low areas (below 600 m), Andes refers to the higher altitudes (above
600 m) and protected are the areas inside protected areas. The metrics are abbreviated as follows: PD = patch density, AREA_MN = mean patch area, LPI = largest
patch index, PAFRAC = perimeter area fractal dimension, CLUMPY = clumpy index, AI = aggregation index, SHDI = Shannon’s diversity index. The land cover
classes are abbreviated as follows: CP = coniferous plantations and invasion, BP = broadleaved plantations and invasion, NNF = Nothofagus spp. native forests,
ANF = native A. araucana forest.

Class level metrics Landscape level metrics

PD (patches / 100 ha) AREA_MN (ha) LPI (%) PAFRAC CLUMPY AI SHDI

Malalcahuello Whole Landscape x x x x x 87.40 1.21
CP 11.72 0.41 1.52 1.35 0.75 x x
BP 20.70 0.44 3.68 1.38 0.73 x x
NNF 30.15 1.89 26.29 1.38 0.80 x x
ANF 14.98 0.61 7.99 1.38 0.75 x x
Shrubs 58.98 0.38 4.88 1.43 0.71 x x

Valley Landscape x x x x x 85.68 1.31
CP 14.05 0.58 2.24 1.35 0.82 x x
BP 27.73 0.58 5.47 1.38 0.77 x x
NNF 33.52 1.20 15.66 1.39 0.79 x x
ANF 0.70 0.31 0.08 1.41 0.74 x x
Shrubs 70.93 0.24 2.75 1.45 0.67 x x

Andes Landscape x x x x x 89.69 1.07
CP 8.48 0.18 0.52 1.35 0.66 x x
BP 9.77 0.23 0.90 1.38 0.66 x x
NNF 25.61 2.83 40.64 1.38 0.82 x x
ANF 16.66 0.64 8.92 1.38 0.75 x x
Shrubs 43.05 0.57 7.72 1.41 0.76 x x

Protected Landscape x x x x x 90.47 1.11
CP 2.26 0.11 0.11 1.32 0.63 x x
BP 1.44 0.06 0.01 1.44 0.39 x x
NNF 30.46 0.90 14.89 1.39 0.77 x x
ANF 23.67 0.73 12.18 1.40 0.73 x x
Shrubs 28.52 0.47 7.75 1.38 0.75 x x

Villarrica Whole Landscape x x x x x 86.81 1.15
CP 16.84 0.21 1.35 1.41 0.65 x x
BP 35.10 0.05 0.38 1.45 0.38 x x
NNF 34.49 1.95 33.30 1.42 0.76 x x
ANF 38.45 0.16 2.60 1.43 0.60 x x
Shrubs 48.61 0.66 13.16 1.40 0.76 x x

Valley Landscape x x x x x 85.56 1.26
CP 19.70 0.24 1.61 1.39 0.67 x x
BP 47.04 0.08 0.72 1.47 0.51 x x
NNF 40.40 0.70 13.10 1.44 0.73 x x
ANF 11.52 0.05 0.32 1.42 0.37 x x
Shrubs 43.32 0.94 21.91 1.42 0.75 x x

Andes Landscape x x x x x 87.34 1.10
CP 14.73 0.18 1.16 1.42 0.63 x x
BP 26.85 0.03 0.14 1.44 0.28 x x
NNF 31.96 2.48 41.92 1.41 0.78 x x
ANF 47.11 0.20 3.33 1.44 0.67 x x
Shrubs 50.87 0.55 9.42 1.40 0.76 x x

Protected Landscape x x x x x 88.18 1.12
CP 30.50 0.22 2.47 1.43 0.62 x x
BP 50.61 0.03 0.09 1.48 0.35 x x
NNF 27.35 2.32 34.58 1.40 0.80 x x
ANF 29.01 0.17 2.06 1.42 0.65 x x
Shrubs 48.87 0.48 7.41 1.40 0.73 x x
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forestry, agriculture and farming. However, Villarrica shows an inverse
trend (Fig. 4), with slightly more coniferous alien tree cover at higher
altitudes. Here, lower, easily accessible areas in Villarrica are more
restricted to recreational and touristic uses, relegating forestry to more
remote or higher locations.

Several metrics related to grassland cover were also among the top
half ranked importance variables in both models. However, the partial
dependence plots did not exhibit a particular trend. In almost all of
them, the area of alien pine remained constant with an increasing
grassland cover, as shown in Malalcahuello in Fig. 5.

The nature of the relationship between coniferous alien tree cover
and A. araucana native forest is especially relevant given their endemic,
endangered and culturally relevant status. Pinus spp. plantations,
especially those that are abandoned or have long rotations, are a threat
to this native ecosystem (Pauchard et al., 2014; Peña et al., 2008; Tella
et al., 2016). Of the three metrics related to mixed native forest, only
mean patch area is shown here, as all showed similar results (Fig. 5).
There is an initial decrease in coniferous alien tree cover with an in-
crease in mixed native forest, which is especially pronounced in Ma-
lalcahuello. This is followed by an abrupt increase of alien tree cover
with a further increase in the native forest. This is not surprising, as
patches of pine trees were observed within the native Araucaria arau-
caria forest, which is naturally open. In addition, the openness of the
native forest constitutes an ideal environment for heliophytes like Pinus
spp. to colonize, provided that there is enough propagule pressure
(Ledgard, 2001; Taylor et al., 2016).

Lastly, the partial dependence plots for two variables that were
highly relevant in the Villarrica model but not present in the
Malalcahuello model are shown in Fig. 6. Here, the traditional and
generally accepted hypothesis that distance to seed sources is of great
importance for invasion (Altamirano et al., 2016; Arellano-Cataldo and
Smith-Ramírez, 2016; Giorgis et al., 2016, 2011; Pauchard et al., 2016;
Richardson et al., 2000) is confirmed. As mentioned earlier, the fact
that distance to seed sources is not present in the Malalcahuello model
indicates that, especially in the Malalcahuello site, the dominant

pattern is driven by plantations, masking the effect of invasions. Patch
density of Nothofagus spp. native forest (Fig. 6) shows a very sharp
increase in coniferous alien stand mean patch area at the higher patch
density of Nothofagus spp. native forest. This abrupt increase did not
occur in the plots for largest patch index and mean patch area for the
same land cover class, suggesting that fragmentation, rather than ha-
bitat loss, could play a role in the presence of alien species. Higher
patch densities involve higher fragmentation compared to an un-
touched forest, which agrees with the widespread idea that fragmen-
tation and alien species are closely related (Arellano-Cataldo and
Smith-Ramírez, 2016; León Cordero et al., 2016; Tella et al., 2016).

4. Discussion

The selected alien trees (Eucalyptus genus and Pinaceae family) were
successfully mapped using Sentinel-2 medium resolution imagery
within the native forest matrix, as required in the first objective of this
study. The land cover map demonstrates that alien trees are located
within the protected areas, especially in Villarrica. This agrees with
existing concerns about alien species (particularly Pinaceae) reprodu-
cing naturally and spreading to A. araucana forests, which are located
chiefly inside protected areas, potentially impeding the regeneration of
A. araucana (Pauchard et al., 2014; Peña et al., 2008).

The methodological approach applied, based on the random forest
classification of multi-seasonal and DEM composite images, was able to
detect alien tree patches as small as 100 m2 within a native vegetation
matrix, addressing the first objective of mapping the locations of the
alien patches. This demonstrates strong potential for large-scale forestry
monitoring, particularly for management and monitoring of alien spe-
cies, helping prevention of biological invasions. Large-scale manage-
ment of biological invasions is a practical way of reducing them
(Marvier et al., 2004). Conventional forest inventories are expensive,
time-consuming activities typically only performed every few years at
best and are always subject to budgetary and resource constraints. In
contrast, satellite-derived land cover maps such as those presented in

Table 6
Relative importance of the explanatory variables ranked from highest (top) to lowest (bottom) importance. The abbreviation %IncMSE is the increase in mean
squared error.

Malalcahuello Villarrica

Explanatory variables %IncMSE Explanatory variables %IncMSE

Shannon’s diversity index 28.54 Distance to nearest patch of coniferous alien tree stand 27.89
Largest patch index of grasslands 24.01 Shannon’s diversity index 18.62
Elevation 23.24 Patch density of Nothofagus spp. native forest 16.33
Mean patch area of grasslands 21.61 Mean patch area of Nothofagus spp. native forest 15.86
Proportion of grasslands 20.51 Patch density of grasslands 13.89
Largest patch index of A. araucana native forest 18.55 Distance to lakes 13.74
Mean patch area of A. araucana native forest 18.17 Mean patch area of grasslands 12.93
Proportion of A. araucana native forest 17.53 Largest patch index of grasslands 12.64
Largest patch index of Nothofagus spp. native forest 16.72 Proportion of grasslands 12.58
Patch density of shrubs 16.07 Elevation 10.26
Patch density of A. araucana native forest 15.80 Aggregation index 9.50
Proportion of Nothofagus spp. native forest 14.37 Distance to roads 9.48
Distance to lakes 12.93 Patch density of shrubs 9.24

Mean patch area of shrubs 9.08
Mean patch area of A. araucana native forest 8.47
Distance to nearest urban area 7.76
Proportion of Nothofagus spp. native forest 7.66
Patch density of A. araucana native forest 7.56
Largest patch index of A. araucana native forest 7.01
Largest patch index of Nothofagus spp. native forest 6.98
Proportion of shrubs 6.54
Proportion of A. araucana native forest 6.30
Largest patch index of shrubs 5.89
Distance to rivers 1.72
Slope 1.18
Forest fires 2015–2017 0.74
Aspect −0.09
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this study can be produced several times annually. They are far less
resource intensive and Sentinel-2 data is freely available with regular
temporal coverage, although availability can depend on cloud cover
conditions. In extensive and topographically challenging areas such as
the Andes and the Andean foothills, the capability to produce periodi-
cally land cover maps such as those shown here using cost-free re-
sources such as Sentinel-2 imagery and the R software could better
inform management operations and improve and optimise conservation
activities by enabling specific targeting of high interest areas.

Addressing the second objective, which aimed to describe the spa-
tial characteristics of forested areas, analysis using landscape metrics
revealed an altitudinal pattern shared by Malalcahuello and Villarrica,
as well as some contrasts between the two study areas. Valleys are
shown to have higher patch densities with higher mean area and largest
patch index of alien species, and lower mean area and largest patch
index of native forests. The higher elevation areas exhibit lower patch
densities with lower mean area of alien tree stands, and higher mean
area of native forests. Consequently, in valleys, native forests are
markedly more fragmented than in the Andes and are accompanied by
an increased proportion of alien tree cover. This conforms with the
generally accepted theory that alien species and landscape fragmenta-
tion are closely linked (Arellano-Cataldo and Smith-Ramírez, 2016;
León Cordero et al., 2016; Tella et al., 2016). However, it is important
to highlight that fragmentation inside protected areas is high for A.
araucana, which suggests that a reevaluation of the conservation

strategy for this tree is needed.
Malalcahuello and Villarrica have contrasting land uses and dif-

fering histories of alien tree introduction. Villarrica has a higher po-
pulation density (Library of National Congress Chile, 2015), intense
tourism (Library of National Congress Chile, 2015), and a longer history
of alien introduction than Malalcahuello. Introductions started in 1950
in Villarrica and 1969 in Malalcahuello (Kunstmann, 1965; Peña et al.,
2008; von Buch, 1965). These differences could have led to the con-
trasts in their landscape structure. In general, Villarrica has a less clear
landscape pattern when compared to Malalcahuello. Malalcahuello has
higher mean patch area of alien trees, and they are predominantly
clustered in accessible areas. Extreme values of most of the metrics
occur in Villarrica, suggesting a more complicated mix of land covers.
Even though Villarrica has comparatively lower mean patch area of
alien tree stands, its native forests (when both Nothofagus spp. and A.
araucana are considered together) are more fragmented, with higher
patch density and less mean patch area.

Aside from Villarrica’s native forest populations being more frag-
mented, further results indicate that its conservation status and pro-
spects are worse than that of Malalcahuello. A. araucana forests reach
their highest patch densities and mean areas inside protected areas in
Malalcahuello, but this is not the case in Villarrica. Additionally,
Villarrica has a high mean patch area and largest patch index of con-
iferous alien trees inside protected areas. This is concerning for the
long-time conservation of the endemic A. araucana as Villarrica is a

Fig. 4. Partial dependence plots of variables in the Malalcahuello and Villarrica models.

P. Martin-Gallego, et al. Forest Ecology and Management 474 (2020) 118353

13



touristic area undergoing intensive construction, with certain areas
interesting from a conservation perspective remaining unprotected. The
location of protected areas in Villarrica needs to be revised to ensure
that they achieve their conservation objectives. Regarding alien tree

cover, even though Malalcahuello has a larger area, it also has a lower
patch density and a larger average patch size than Villarrica. This
suggests that there is a larger number of small alien tree patches scat-
tered in Villarrica’s landscape, which could pose a risk of invasion

Fig. 5. Partial dependence plots of variables in the Malalcahuello and Villarrica models.

Fig. 6. Partial dependence plots of highly relevant variables in the Villarrica model.
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regardless of the origin of these patches (plantation or invasion) due to
the number of propagule foci.

The third objective was to model the influence of landscape struc-
ture on the Pinaceae extent (mean patch area of coniferous alien tree
stands was the response variable). The random forest models for the
two study sites consistently identified some of the same variables
(Shannon’s diversity index, elevation, grassland related metrics) as
being of high importance, however they had different levels of com-
plexity. The random forest model was more complex for Villarrica
(retaining 27 explanatory variables as opposed to 13 for
Malalcahuello). The land cover diversity quantified using Shannon’s
diversity index was identified as a relevant predictive variable for mean
patch area of coniferous alien stands in both sites. An increase in land
cover diversity was associated to an increase in alien land cover,
especially in Malalcahuello, where this trend was more marked as a
result of its more structured landscape. This is concerning, as a slightly
higher Shannon’s diversity index was found inside protected areas in
both sites. It is unclear, however, if the increase in diversity is merely a
result of the introduction of new species for forestry, or if a diversifi-
cation of the land covers in fact triggered the expansion of alien trees.
Future work should address this temporal aspect to enable the use of
diversity metrics as predictors for future expansion of alien species.

Distance to seed sources (other alien tree patches) was only a re-
levant predictor for Villarrica, where alien tree cover decreases with
distance from seed source, consistent with accepted invasion theories
(Giorgis et al., 2016; Pauchard et al., 2016; Richardson et al., 2000).
This, together with the spatial pattern information extracted, suggests
that invasions might be occurring in Villarrica, while there are other
drivers determining the location of the patches in Malalcahuello. These
drivers could be socio-economic in nature, with forestry being one of
the main economic activities in Malalcahuello. However, invasion at
smaller scales could be occurring in this area, as there were some
coniferous alien tree patches located in highly sensitive areas (A. ara-
ucana forests) inside the National Reserve of Malalcahuello. Also, it has
been reported that alien species are entering protected areas using
roads as corridors in locations very close to these study sites (Pauchard
and Alaback, 2004). However, it is important to highlight that this
methodology does not differentiate between alien plantation and alien
invasion patches. The fact that distance to seed sources has not been
identified as a relevant explanatory variable in the Malalcahuello model
suggests that the plantation pattern is masking the invasion pattern. On
the other hand, the higher complexity model for Villarrica suggests that
the invasion pattern has not been completely concealed by the plan-
tation pattern. In addition, Villarica has distance to seed sources as the
most important explanatory variable, and this agrees with invasion
theory. That is why it is suggested that Villarrica might be in greater
danger of invasion than Malalcahuello. Future work could address alien
trees in targeted areas at a finer scale, potentially using higher spatial
resolution satellite imagery, to try to distinguish alien tree invasion
from plantation.

The contrasting trends in the relationship between altitude and
coniferous alien tree cover show that topography plays a secondary role
behind other variables, likely related to land use. In Malalcahuello, a
rural area with abundant productive alien plantations, these tend to be
located in lower, easily accessible areas. In Villarrica however, where
other industries like tourism are more relevant, alien tree patches are
pushed to higher altitudes, where most of the native forests are located,
being a potential source for invasion.

Finally, it is important to highlight that mean patch area of con-
iferous alien tree stands increased with mean patch area of A. araucana
forests in both models. This means that even though A. araucana is a
Natural Monument in Chile and is protected from felling, there is pre-
sence of Pinaceae in its surrounding environment. This Pinaceae pre-
sence constitutes an invasion risk, as A. araucana forests are especially
vulnerable to Pinaceae invasions due to their open forest structure. This,
together with the fact that there are abandoned pine plantations inside

the National Reserve of Malalcahuello, and that Pinaceae are located in
higher areas with part of the A. araucana trees not inside protected
areas in Villarrica, calls for a reevaluation of the conservation strategies
that are being followed for this endangered (Premoli et al., 2013) and
endemic tree. In its current situation, A. araucana could be out-
competed by trees from the Pinaceae family, which are mostly helio-
phytes and strong competitors in open environments (Ledgard, 2001;
Taylor et al., 2016), reducing it to a relict state in due course.

5. Conclusion

This study has presented a cost-effective and relatively quick way of
surveying alien tree stands within a matrix of native forests. It has been
demonstrated that the methodology applied using freely available
medium resolution Sentinel-2 optical satellite data is useful for the
monitoring of alien trees within the Chilean Valdivian temperate forest,
whose extent and topography limit traditional, ground based methods.
Very high levels of mapping detail and accuracy have been achieved,
detecting small patches (100 m2) of alien Pinaceae and Eucalyptus spp.
trees within a matrix of Nothofagus spp. and A. araucana native forests.
This enables the monitoring and management of alien trees at the
landscape scale in an effective and inexpensive manner (Marvier et al.,
2004).

Within each study site, native forest fragmentation is accompanied
by an increase in alien tree cover following an altitudinal gradient. The
presence of alien trees acting as a source of propagules and the frag-
mentation of the landscape could lead to biological invasions (Marvier
et al., 2004) in the area. However, when comparing the two study sites,
Malalcahuello, which has a comparatively higher area of alien trees,
has less fragmented native forests than Villarrica. Very large manage-
ment scales, i.e. between sites, imply a difference in socioeconomic and
even environmental variables. These differences have a synergistic
impact in the specific landscape configuration of each site. For this
reason, the management of biological invasions needs to be conducted
at the appropriate scale and using meaningful metrics for that scale,
staying away from ‘one size fits all’ conservation policies.

The results of this study agree on the concern about the long-term
continuity of the A. araucana forests, as the modelled results show in-
creasing Pinaceae cover with increasing A. araucana native forest cover,
and high land cover diversity and fragmentation of A. araucana within
protected areas. Consequently, even though A. araucana is protected
from felling by law, it could be outcompeted by Pinaceae. The protec-
tion status of A. araucana is particularly alarming especially in
Villarrica, as a large part of the population is outside protected areas
and there is a large alien tree cover within protected areas and at higher
altitudes, the natural habitat of A. araucana. A reconsideration of the
location of protected areas and the restriction of productive forest
plantations to lower altitudes, far from the A. araucana native forests,
are recommended conservation measures to ensure the long-term con-
tinuity of the A. araucana populations.
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