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Abstract The factors that determine patterns of non-

native species richness and abundance are context

dependent in both time and space. Global change has

significantly boosted plant invasions in mountains,

therefore, understanding which factors determine the

invasion and at what scale they operate are funda-

mental for decision-making in the conservation of

mountain ecosystems. Although much evidence has

been gathered on the patterns of non-native species in

mountain ecosystems, little is known about what

specific abiotic, biotic, or anthropogenic factors are

driven such patterns. Here, we assessed the importance

of anthropogenic, biotic, and abiotic factors at two

spatial scales as drivers of plant invasions along three

roads in south-central Chile. We sampled non-native

plant richness and abundance, and each of these

explanatory factors, in-situ in 60 transects in disturbed

areas and adjacent undisturbed vegetation. Low ele-

vation areas were the most invaded, with patterns of

richness and abundance driven mainly by anthro-

pogenic factors, explaining between 20 and 50% of the

variance for the three roads. Only for the abundance of

non-native species along the road in the Malalcahuello
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National Reserve, biotic factors were more important

(45% of the variance). At the regional scale, the

abundance of non-native species was again explained

best by anthropogenic factors (24% of the variance),

yet non-native richness was driven most strongly by

abiotic factors such as soil nitrogen content and pH

(15% of the variance). Our results confirm the

conclusions from experimental studies that anthro-

pogenic factors override abiotic factors and are

important drivers of non-native species at local and

regional scales and that non-native plant invasion in

mountains is currently not strongly limited by climate.

Keywords Andes mountains � Invasive species �
Non-native species � Human settlement � Protected
areas

Introduction

Although the presence of non-native species has

become increasingly common in mountain regions,

so far, the levels of invasions have shown to be

relatively low (Pauchard et al. 2009; McDougall et al.

2011; Marini et al. 2013; Fuentes-Lillo and Pauchard

2019). As in other ecosystems, the invasion process in

mountain ecosystems is defined by the interaction

between abiotic conditions, biotic interactions, and

propagule pressure (Catford et al. 2009). Mountains,

however, show interesting specific complexities on the

factors that drive and limit invasions and how they

vary among regions with different environmental

contexts (Alexander et al. 2016; McDougall et al.

2018). In general, anthropogenic factors can increase

the success of the invasion since they function as

vectors for the transport of propagules and modify the

biotic and abiotic conditions that facilitate the estab-

lishment of non-native species (Van Der Wal et al.

2008, Catford et al. 2009; Pauchard et al. 2009;

Pollnac et al. 2012; Cabra-Rivas et al., 2015, Lem-

brechts et al. 2017). Most studies of plant invasions in

mountains have used elevation as a proxy for a

multitude of intertwined variables, such as climate,

anthropogenic disturbance and ecosystem types to

explain the changing patterns of richness and abun-

dance of non-native species (Pauchard et al. 2009;

Seipel et al. 2012). However, few studies have

disentangled the mechanistic factors underlying these

patterns, as both observational and experimental

studies have shown that these drivers (abiotic, biotic

and anthropogenic) are context dependent and vary

both in time and on spatial scales (Kumar et al. 2006;

Pauchard and Shea 2006; Dray et al. 2012).

Probably the most obvious constraints for plant

invasions in mountains are abiotic factors, in particular

climate harshness associated to higher elevation

(Pauchard et al. 2009). It has been shown that the

decrease in the richness of non-native species in the

mountains is mainly associated with the large-scale

climatic gradients (i.e. temperature and precipitation)

determined by elevation (Seipel et al. 2012; Alexander

et al. 2016; Haider et al. 2018). At smaller scales, one

can see the additional importance of abiotic factors

(e.g. soil temperature, soil moisture, nitrogen, pH) as

local drivers of the fine-grained richness patterns of

non-native species in mountain ecosystems (Buri et al.

2017; Gantchoff et al. 2018; Lembrechts et al. 2018).

Recently, there has been increasing interest in

understanding how biotic interactions drive invasive

species distribution in mountains. For example, sev-

eral studies have identified a key role for facilitating

interactions in establishing non-native species at the

smallest scale (Cavieres et al. 2005, 2007; Badano

et al. 2015). Competitive interactions on the other

hand are more intense at low elevations. As abiotic

conditions become more adverse for growth, facilita-

tion is a key process to explain the presence of non-

native species in higher elevation areas (Cavieres et al.

2007; Badano et al. 2015; Alexander et al. 2016).

Nevertheless, experimental studies have shown that

biotic interactions with the established community can

remain negative for non-native plant invaders, even at

high elevations (Lembrechts et al. 2016). It has also

been observed that more productive communities

generate greater resistance to the invasion of non-

native species (Pearson et al. 2018). For example, it

has been observed in mountain ecosystems in

Argentina that the number of non-native species

decreases significantly with increasing coverage of

native species (Pearson et al. 2018), while in sub-arctic

mountain ecosystems where native species richness

functions as a filter to explain the decrease in

establishment of non-native species, while abiotic

factors, mainly temperature explains the presence of

non-native species at landscape and regional scales,

which is related to the spatial environmental hetero-

geneity hypothesis, indicating that as environmental
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variability (spatial variability) increases, the greater

the number of non-native species (Souza et al. 2011;

Haider et al. 2018). A deeper understanding of biotic

factors is thus needed to explain how biotic interac-

tions (competition and/or facilitation) and the produc-

tivity of native ecosystems at multiple scales explain

the current patterns of distribution of non-native

species in mountains (Wisz et al. 2013).

Propagule pressure and the role of disturbance have

been studied in mountain ecosystems using proximity

to the road and the presence of human activities as

indirect proxies (Seipel et al. 2012). Roads and other

corridors have been shown to be key to understanding

the presence of non-native species at higher elevations

(Alexander et al. 2009; Seipel et al. 2012; Giorgis et al.

2011, 2016; Liedtke et al. 2020). Seed-addition

experiments, besides, have identified that an increase

in propagule pressure can explain the abundance of

non-native species along elevation gradients (Lock-

wood et al. 2005; McGlone et al. 2011; Pollnac et al.

2012; Lembrechts et al. 2016). Disturbance is known

to work through its modification of the climatic

conditions, (changes in climatic extremes through

the elimination of vegetation and changes in soil

conditions such as pH levels, availability of nutrients

and soil moisture, due to the presence of roads in

ecosystems) favoring the establishment of non-native

species (Müllerova et al. 2011, Haider et al.

2010, 2018; McDougall et al. 2018; Thom et al.

2020). At local scales, disturbance also favors the

establishment of non-native species through the

removal of vegetation and release of resources, mainly

in higher elevation areas (Paiaro et al. 2007; Dainese

et al. 2017; Pearson et al. 2018).

As global change will generate significant changes

in the climatic patterns, and substantial increases in

anthropogenic disturbances (Roques 2010; Gou et al.

2018), understanding the factors that determine non-

native plant invasions in mountains is of utmost

importance to develop efficient conservation policies

for protected areas (Slodowicz et al. 2018). Climate

change has been shown to lead to increased invasion

events, especially at higher elevations (Oke and

Thompson 2015; Petitpierre et al. 2016; Shrestha

et al. 2018). Additionally, increasing globalization, in

mountains, represented by population increases,

tourist centers, infrastructure, will have a direct impact

on the dispersion and establishment of non-native

species (Terzano et al. 2018).

Due to their extremely high climatic and anthro-

pogenic heterogeneity, which allows both observa-

tional and experimental studies with a multi-scale

approach, mountains are a unique natural laboratory

for the study of invasion processes (Pauchard et al.

2009; Alexander et al. 2016; Kueffer et al. 2014). In

Chile, mountains provide extremely valuable ecosys-

tem services (e.g. water, recreation), and they repre-

sent biodiversity hotspots with high levels of native

and endemic species (Lara et al. 2009; Fuentes-

Castillo et al. 2019; Fuentes-Lillo and Pauchard 2019).

During the last decades, however, human activities

associated with tourism, agriculture, mining and

forestry have been progressively degrading these

ecosystems in Chile (Pauchard and Alaback 2004),

and worldwide (Pauchard et al. 2009, 2016).

In this work, we aim to disentangle the importance

of the main factors (abiotic, biotic and anthropogenic),

that define at local and regional levels the richness and

abundance of non-native species along altitudinal

gradients in the central-southern Chilean Andes.

Propagule pressure was not included in the study due

to its high correlation with anthropogenic variables,

such as the proximity to human settlements and the

distance to road (Pollnac et al. 2012). The study

ecosystems are inserted within a matrix of anthro-

pogenic land-uses, with urban centers and agricultural

activities in the lowlands and ski and tourist centers at

high elevations (Pauchard and Alaback 2004), which

means that each elevational gradient that makes up the

central-southern Chilean Andes has vegetational,

climatic and topographic characteristics that cause

the factors that explain the richness and abundance

patterns of non-native plants to vary according to each

elevational gradient analyzed (Pauchard et al. 2013).

Furthermore, these areas are influenced by natural

disturbance processes resulting from volcanic erup-

tions and natural fire cycles that have given these

mountains unique characteristics, both regarding their

climate and their floristic composition (González et al.

2010). Thus, the central-southern Chilean Andes are

particularly suitable to investigate the role of the

different drivers of the invasion process, both from a

theoretical point of view and due to the implications

for the management and control of non-native species

in a disturbed mountain area in an era of global

change. Specifically, we aim to answer the following

questions: 1) What are the main factors that determine

the richness and abundance of non-native species in
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the central-southern Andes of Chile? And 2) How do

the drivers of richness and abundance of non-native

species change from a local (one road) to a regional

scale (across all three roads). We hypothesize that at

local levels, anthropogenic factors, such as the

distance of the road and the distance to human

settlements, better explain species richness and abun-

dance patterns for non-native species, while at the

regional level abiotic factors like temperature would

be more important (Seipel et al. 2012; Lembrechts

et al. 2016; Haider et al. 2018). While we anticipate a

certain role for biotic factors (i.e., diversity and

productivity proxies as a measure of invasibility of

the established vegetation), we hypothesize them to be

overruled by anthropogenic and abiotic factors,

mainly due to the high environmental heterogeneity

and high anthropogenic disturbance that predominate

in the mountain ecosystems of central-southern Chile,

which have historically defined the biodiversity pat-

terns in these ecosystems (Echeverria et al. 2006;

Haider et al. 2018).

Methods

Site description

We selected three roads in the Andes mountain range,

in the central-south zone of Chile (from 37� S to 39�
S): Laguna Laja National Park (LLNP) (37� 38� 4500

S,71� 380 2500 W), Malalcahuello National Reserve

(MNR) (38� 430 4900 S, 71� 480 8200 W) and Conguillio

National Park (CNP) (39� 410 1700S, 718 470 3200W).

The three roads were selected due to the wide

environmental gradient they cover, associated with

altitudinal gradients ranging from * 400 to * 1600

m a.s.l. In addition, these roads have year-round

vehicular traffic and intense anthropogenic pressure

resulting from agricultural activities and tourism.

These three roads have similar bioclimatic conditions

and composition of native and non-native vegetation

(Luebert and Pliscoff 2017). The roads are located in a

xeric bioclimate (Luebert and Pliscoff 2017). The low

elevation areas are dominated by Mediterranean

deciduous forests of Nothofagus obliqua and Crypto-

caria alba and temperate deciduous forests of N.

obliqua and Persea lingue. Intermediate elevations are

dominated by temperate Andean deciduous forests of

N. alpina and Dasyphyllum diacanthoides. High

elevations are characterized by Andean resinous

forests of Araucaria araucana and Festuca scabrius-

cula and, in some area’s, scrublands of Discaria

chacaye and Berberis empetrifolia (Luebert and

Pliscoff 2017).

Sampling design

To determine the main factors (abiotic, biotic and

anthropogenic) that drive non-native species richness

and abundance (response variables), we used the

standardized survey design proposed by the Mountain

Invasion Research Network as described in Seipel

et al. (2012). 20 T-shaped transects were installed

along each of the three roads. The transects were

placed along an elevation gradient ranging from *
400 to 1600 m a.s.l. (individual elevation ranges

depending on road conditions) in a stratified way, each

transect with an altitudinal separation of approxi-

mately 100 m. The T-transects consisted each of three

50 m 9 2 m plots, with one plot parallel to the road

(hereafter called ‘roadside’) and two plots perpendic-

ular to the road pointing into the adjacent vegetation

(an intermediate plot that goes from 2 to 52 m and an

interior plot from 52 to 102 m). In each plot all non-

native species were recorded and their abundance was

measured based on the number of individuals or

ramets per plot, assigning a value of 1 (1–10 individ-

uals), 2 (10–100 individuals) or 3 ([ 100 individuals)

(Seipel et al. 2012). A list of abiotic, biotic and

anthropogenic variable was recorded along the road-

side and in the adjacent vegetation as detailed below

(Table S1). To evaluate the effect of the scale, models

were made for each road individually (local scale) and

models that include the data of the three roads together

(regional scale).

Abiotic variables

To determine the relationship between species rich-

ness and abundance of non-native species and abiotic

variables, we measured local soil and air temperature,

soil humidity and key soil biogeochemical parameters.

All variables were measured both in the roadside and

in the adjacent vegetation (52 m from the road).

Temperature was recorded using iButton sensors

(DS1922L, www.maximintegrated.com, measuring

every hour for a period of 1 year) at 5 cm depth (soil

temperature) and at 1 m height (air temperature). We
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calculated growing degree days (GDD soil and air)

from these time series as the sum of all daily averages

above 5 �C during the growing season (the months of

December to February were used, corresponding to the

summer season in these ecosystems) (Lembrechts

et al. 2016). Soil moisture was measured in each plot at

least three times during the growing season (three

months, December to February), using a FieldScout

TDR 100 soil moisture meter. Finally, in each plot

(roadside and adjacent vegetation), 100 g of soil

(horizon A) was sampled, consisting of 3 subsamples

of soil randomly distributed in each plot (roadside and

adjacent vegetation), adding up to approximately

100 g of soil. The soil sampling was carried out during

the growing season, and soil was analyzed for soil C /

N-ratio, total carbon and nitrogen, nitrate (NO3
-),

ammonium (NH4
?), organic matter (OM) and pH. The

analyses were carried out at the Soil, Water and Forest

Research laboratory at the Universidad de

Concepcion.

Biotic variables

Four variables were recorded in each plot of the

T-transects to represent diversity, productivity and

invasibility of the native community. Native species

richness and abundance were recorded following the

same three-point scale as described above for non-

native species. Cover of herbs and trees was estimated

visually in each plot following a pseudo-log scale from

1 to 8 (1 = up to 1%; 2 = 1–5%; 3 = 6–25%; 4 = 26

-50%, 5 = 51–75%, 6 = 76–95%, 7 = 96–100%)

(Seipel et al. 2012).

Anthropogenic variables

To assess the influence of anthropogenic disturbances,

four variables were recorded in each plot. This

included presence/absence agricultural activities (cul-

tivation and livestock), level of (anthropogenic)

disturbance, distance to the road, and proximity to

human settlements. The level of anthropogenic dis-

turbance was measured on a three-point scale includ-

ing 0 (no disturbance of vegetation or soil), 1

(moderate disturbance in less than 50% of the plot)

and 2 (severe disturbance in more than 50% of the

plot). Disturbance consisted of any removal of the

vegetation by human factors, like the presence of

trails, fire or livestock and cultivation. Distance to the

road was measured in situ in the middle of the plot at

the time of establishing the plots using a handheld

GPS, these values were fixed for each transect and

each road, and correspond to 1 m for the plot parallel

to the road, 27 m and 77 m for plots 2 and 3 that are

located adjacent to the road. Finally, the proximity to

human settlements was measured from each plot (road

and adjacent vegetation) to the edge of the closest

human settlement, using GPS positions and a geo-

graphic information system (GIS; ArcView 3.3)

(Tomasseto et al. 2013; Bjørvik et al. 2015). We

considered as human settlements any type of building

(e.g. villages, farms) that presents a constant flow of

people throughout the year. Mountain shelters and

buildings for use by ranchers, which are common in

these areas, were thus excluded, as they are only

irregularly occupied.

Data analysis

All data analyses were run in R version 3.6.1 (R Core

Team 2019).

To determine the correlation between each variable

within each group (abiotic, biotic and anthropogenic)

including the response variables, a Pearson correlation

analysis was performed. Using the ggplot package, a

correlation matrix was constructed, using a threshold

of R2[ 0.75 to determine collinearity between the

variables (Fig. S1a, b, c). Additionally, all independent

variables were plotted as a function of elevation, using

the ggplot package (if variables were significantly

correlated, only the most ecologically relevant vari-

able was included in the following models) (Fig. S2).

To assess the importance of the abiotic, biotic and

anthropogenic factors on the non-native species rich-

ness and abundance at local (along one road) and

regional (across all three roads) scales, we used

generalized linear mixed-effects models (GLMMs,

using the ‘‘lmer’’ function in the package lme4).

GLMMs were constructed for each road separately,

with transect number as a random effect, for the local

scale, and with transect nested in road as a random

effect for all roads together for the regional scale. All

models were adjusted to a Poisson distribution error

with logit log. We made separate models for non-

native richness and abundance and for each separate

group (abiotic, biotic and anthropogenic), using all

correlated variables for each group. We selected the

best model for each group using the Akaike
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Information Criterion (AIC), where the best model is

the one with the lowest AIC-value (Venables and

Ripley 2002, package MuMIn, Barton 2016). Impor-

tantly, elevation was not included in any of the models,

because it correlates strongly with the majority of the

analyzed variables (e.g. temperature or nitrogen

content) so it was only used at the time of plotting

for visualization of the most important variables.

Next, to determine the relative importance of each

of the three groups as driver of non-native species

richness and abundance, models were constructed for

each response variable with the three most significant

variables that were determined using the group-

specific GLMMs above (Table S2). Then, for each

response variable (richness and abundance) and for

each spatial scale (local and regional), the percentage

of variance explained by each group (abiotic, biotic

and anthropogenic (Table S2)) was determined using a

variance partitioning approach (Lembrechts et al.

2016). By using three variables for each group, we

ensure a fair comparison of explained variance across

all groups. We calculated for each model the marginal

R2 (fixed effects) and the conditional R2 (full model)

using the r.squaredGLMM function of the MuMln

package (Table S3) (Barton 2016). To determine the

relative importance of each group, a series of models

were constructed with (I) only one focus group, (II) all

groups except the focus group, and (III) the complete

best model with all explanatory variables. We then

calculated for each group the differences between the

marginal R2 of the full model and the model without

the focal variable and divided by themarginal R2 value

of the full model (Table S3) (Lembrechts et al. 2016).

Results

Along all three roads, non-native species richness

decreased with elevation. Non-native species abun-

dance decreased as a function of elevation only for the

CNP and MNR roads (the latter with a small increase

at high elevations), while for the LLNP it increases

towards mid-elevations with a peak near 800 m.a.s.l,

followed by a linear decrease with elevation (Fig. 1).

Factors that determine the abundance of non-

native species at different scales

Except for the MNP road, anthropogenic factors were

the most important driver to explain the abundance of

non-native species at the local scale (Table 1, Fig. 4).

The abundance of non-native species decreases with

increasing distance to human settlements (2 out of 3

models, Fig. 2d, f), increases with the presence of

human disturbances (Table S2, Fig. S3 d) and the

presence of human activities (Table S2, Fig S3 f). For

the MNP road, the most parsimonious model was the

biotic model (Table 1, Fig. 4), with the abundance of

non-native species decreasing with increasing abun-

dance of native species and herbaceous cover

(Table S2, Fig. 2e, Fig S3e). On a regional scale, the

abundance of non-native species was explained by

anthropogenic factors (Table 1, Fig. 4), where the

abundance of non-native species decreases with

increasing distance to human settlements, while the

abundance of non-native species increases with the

presence of agricultural activities (Table S2, Fig. 3c,

d).

Factors that determine the richness of non-native

species at different scales

Anthropogenic factors were the most important driver

to explain the richness of non-native species at local

scales (Table 1, Fig. 4). The richness of non-native

species decreases with increasing distance to human

settlements (3 out of 3 models, Fig. 2a, b, c) and with

distance to the road (Table S4, Fig. S3 a, b), while an

increase in the richness of non-native species is

observed with the presence of agricultural activities

(Table S4, Fig. S3 c). On a regional scale, the richness

of non-native species is explained by abiotic factors

(Table 1, Fig. 4), with an increase in the richness of

non-native species as the ammonium content increases

and the pH decreases (Table S2, S3, Fig. 3a, b).

Finally, both for the abundance and richness of non-

native species for the different spatial scales, there is a

significant amount of inexplicable variance (Table 1,

Fig. 4).
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Discussion

As hypothesized, anthropogenic factors were the most

important drivers of both the richness and abundance

of non-native species at the local scale, with an

important role for the proximity to human settlements

and the presence of agricultural activities and distance

to the road. These factors have been identified as

important drivers of plant invasions in other mountain

ecosystems across the globe, for example in Argentina

(Paiaro et al. 2011), Norway (Lembrechts et al.

2014, 2016; Clavel et al., 2021), Canary Island (Otto

et al. 2014), Chile (Pauchard and Alaback 2004),

Yellowstone National Park (Pollnac et al. 2012),

Ecuador (Sandoya et al. 2017) and Bolivia (Fernán-

dez-Murillo et al., 2015). In all these studies, signif-

icantly more non-native species were found next to

roads compared to more natural habitats away from

roads, both at low and high elevations (Seipel et al.

2012; Haider et al. 2018). It is important to note that

each road presents different biotic and environmental

conditions associated with the local topography and

anthropogenic disturbances specific to each road,

which explains why the factors that explain the

richness and abundance vary according to the spatial

scale. This local-scale variation influences and alters

regional-scale environmental patterns, this is typical

of environmental gradients such as mountain ecosys-

tems (López Angulo et al. 2018). For example, local

topography (aspect or slope) can influence local soil

Fig. 1 Elevational patterns of richness and abundance of non-

native species along each studied mountain road. Plots include

model estimate (line), and 95% confidence intervals (gray

shading). LLNP (Laguna Laja National Park), MNR (Malalc-

ahuello National Reserve), CNP (Conguillio National Park).

(Color figure online)

Table 1 Values of R2, AIC are shown for each scale (local, i.e.

separately for each road, and regional) and for each group

analyzed (abiotic, biotic and anthropogenic), both for the

richness and abundance of non-native species

Non-native richness Non-native abundance

R2 AIC R2 AIC

LLNP

Abiotic 0.207 866.3 0.196 859.5

Biotic 0.017 901.1 0.047 885.3

Anthropogenic 0.259 855.4 0.246 847.3

MNP

Abiotic 0.181 724.6 0.141 952.9

Biotic 0.179 725.0 0.432 882.2

Anthropogenic 0.190 722.8 0.301 907.3

CNP

Abiotic 0.348 867.7 0.068 906.4

Biotic 0.134 915.0 0.079 904.5

Anthropogenic 0.437 834.5 0.278 865.1

Regional

Abiotic 0.155 2636.2 0.030 2776.4

Biotic 0.090 2697.2 0.062 2758.2

Anthropogenic 0.019 2662.8 0.238 2656.7

Lower AIC values show the best model for each scale (in bold).

LLNP (Laguna Laja National Park), MNR (Malalcahuello

National Reserve), CNP (Conguillio National Park)
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quality that increases productivity at local scales,

which affects patterns of richness and abundance at

regional scales (Eilts et al. 2011).

The importance of roads for explaining patterns of

richness and abundance of non-native species repre-

sent multiple underlaying factors. First of all, roads

serve as a vector for the transport of propagules

(Pauchard et al. 2009; Taylor et al. 2012; Lembrechts

et al. 2014), yet they also modify soil biogeochemical

conditions (pH, nitrogen, humidity) (Johnston and

Johnston 2004; Lembrechts et al. 2014; Clavel et al.,

2021), microclimate (Lembrechts et al. 2016) and

native vegetation cover (Pauchard and Alaback 2004).

These changes in the microhabitat under the influence

of the disturbances associated with the road facilitates

non-native species establishment, especially of ruderal

species (Lembrechts et al. 2014). In addition to the

effects of roads on non-native richness and abundance,

as expected, the distance to human settlements was

even more important in explaining these patterns.

Even its importance few studies on mountains plant

invasions have included this factor mainly because it

can be correlated with elevation (Haider et al. 2010;

Seipel et al. 2012). However, due to the increased

popularity of tourism in mountains including the

construction of ski resorts and vacation retreats at a

range of elevations, it is important to consider human

settlements as a separate factor (Barros et al.

2013, 2020).

As a result of human disturbance from roads,

including building and maintenance, changes in soil

conditions near roadsides are common (Müllerova

et al. 2011) and affect non-native plants as has been

shown in studies previous (Vonlanthen et al. 2006;

Buri et al. 2017) and this study. Specifically, we found

at the regional level that increased ammonium (NH4
?)

and a decrease in pH increased the non-native

richness. Ammonium, for example, has been proven

to be a good indicator of the richness of non-native

species at regional scales (Urbina and Benavides

2015; Pearson et al. 2018). Studies conducted in the

central Andes in Argentina have found that significant

increases in NO3
- in the soil are positively correlated

with the richness and abundance of non-native species

Fig. 2 Graphical representation of the most important variables

that make up the best models to explain the richness (a-c) and
abundance (d–f) of non-native species at the local scale. Plots

include model estimates (red line, from models with a

logarithmic correction), and 95% confidence intervals (gray

shading). LLNP (Laguna Laja National Park), MNR (Malalc-

ahuello National Reserve), CNP (Conguillio National Park). For

additional variables retained in the final models, see Fig S2.

(Color figure online)
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Fig. 3 Graphical representation of the variables that make up

the best models of the richness (a-b) and abundance (c-d) of
non-native species at the regional scale. Plots include model

estimates (red line, from models with a logarithmic correction),

and 95% confidence intervals (gray shading). (Color

figure online)

Fig. 4 Total percentage of variance in non-native species

richness (rich) and abundance (ab) explained by each factor

(abiotic, biotic and anthropogenic) in the best model for each

road (local scale), and at the regional scale. Results from a

variance partitioning procedure. Noise (percentage of variance

of the data that is not explained by any variable measured in the

study) is plotted in light gray. LLNP (Laguna Laja National

Park), MNR (Malalcahuello National Reserve), CNP (Conguil-

lio National Park). (Color figure online)
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(Pearson et al. 2018). The same effect has been found

in the Colombian Andes where the addition of

nutrients to the soil (mainly nitrogen) facilitated the

invasion by the non-native Pennisetum clandestinium

(Urbina and Benavides et al. 2015). Soil pH has also

been shown to be an important parameter to explain

the distribution of alpine plant species (Vonlanthen

et al. 2006). The pH indeed relates to the concentration

of protons, which directly affects plant available

minerals (Hossner 2008), with a high pH causing

nutrient deficiency in the soil, while low values

improve the solubility of toxic metals (Gobat et al.

2004). Therefore, a soil with neutral or slightly acidic

pH has the highest nutrient availability (Gobat et al

2004; Vonlanthen et al. 2006; Hossner 2008; Bury

et al. 2017). A study conducted on Bank Peninsula,

New Zealand found that soil pH was one of the most

important explanatory variables for non-native species

richness, out of a series of abiotic, biotic and

anthropogenic variables (Tomasetto et al. 2013). Our

results confirm that non-native plant richness at the

regional scale is determined by abiotic factors (nutri-

ents, temperature, light radiation, pH), where the

climatic severity experienced across elevational gra-

dients explains the low richness of non-native plants

that manage to establish in higher elevation areas

(Pauchard et al. 2009; Seipel et al. 2012).

The critical role of distance to human settlements

found in this study may be related to the fact that along

most of the roads studied, human settlements are

concentrated at low elevations (Fig. S2a), where

climatic conditions are more conducive to the growth

and development of non-native species (Tomasetto

et al. 2013). The lowlands are also the main source of

propagules of non-native species (Pauchard and

Alaback 2004; Lembrechts et al. 2014) and present

high levels of disturbance that eliminate competition

and serve as a constant supply of nutrients for the

system, significantly favoring the establishment of

non-native species (Urbina and Benavides 2015;

Lembrechts et al. 2016; Santilli et al. 2018). In sum,

distance to human settlements may be an indirect

proxy of human footprint and propagule pressure.

We also found a positive effect of the presence of

agricultural activities, a variable strongly linked to

land use changes along the altitudinal gradient.

Anthropogenic land use intensification have been

historically concentrated at low elevations (Pauchard

and Alaback 2004). Shifts from landscapes dominated

by Nothofagus sp forests to grazing pastures and other

agricultural uses has favored the establishment and

dispersion of non-native species in the region

(Pauchard and Alaback 2004), and in many cases,

non-native species grasses and herbs have even been

deliberately sown to improve forage (Pauchard and

Alaback 2004). The importance of these agricultural

activities also lies in their modification of microcli-

matic conditions (by changing from forests to pas-

tures) as well as a constant source of propagules of

non-native species (Pauchard and Alaback 2004; Guo

et al., 2018; Zellweger et al. 2020). In addition,

dispersal processes can be facilitated through the

presence of cattle, which functions as a propagation

vector for propagules towards higher elevation areas

and the forest interior away from roads (Pauchard and

Alaback 2004; Seipel et al. 2012; Liedtke et al. 2020).

These patterns of land use change, the presence of

agricultural activities and the distance to human

settlements are the variables that explain the abun-

dance of non-native plants, as they facilitate dispersal

and establishment (Marini et al. 2013). It is important

to note that at the regional scale, richness is being

explained by abiotic factors since climatic severity

limits the establishment of non-native plants, while the

presence of human activities explains the abundance

of non-native plants (Fig. 4). These are mainly

associated with the historical removal of native cover

that has affected low and medium elevation areas in

the mountains of central-southern Chile (Echeverria

et al. 2006; Miranda et al. 2015), allowing non-native

plants that manage to establish to disperse rapidly due

to low biotic resistance and better climatic conditions

generated by human disturbances (Lembrechts et al.

2017).

Again, it is important to highlight that anthro-

pogenic disturbances like road building have a large

effect on soil conditions like pH and nutrient avail-

ability, generally making the soils more alkaline and

increasing their nutrient and organic matter content

(Müllerova et al. 2011). This relates to the importance

of anthropogenic variables as drivers of the abundance

of non-native species at regional scales in our study, as

has been found in other studies in England (index of

human footprint, De Albuquerque et al., 2011), New

Zealand (proximity to buildings and roads, Tomasseto

et al. 2013) and global mountain ranges (distance to

the road, Seipel et al. 2012; Haider et al. 2018;

McDougall et al. 2018).
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To explain the positive relationships between

human disturbance and non-native species richness

and abundance, several mechanisms have been pro-

posed. For example, vegetation removal releases a

significant amount of resources (nutrients, space etc.),

which can be rapidly occupied by non-native species

(Barros and Pickering 2014; Barros et al. 2013;

Lembrechts et al. 2016). The importance of such

vegetation removal has been demonstrated experi-

mentally in mountainous ecosystems of sub-Antarctic

Chile and sub-Arctic Norway, where the removal of

vegetation was the most important factor throughout

the whole invasion process (establishment, growth and

flowering) (Lembrechts et al. 2016). Additionally,

many of these vegetation removal events interact with

dispersal vectors due to the presence of cattle and trails

(Liedtke et al., 2020). These factors have specifically

been shown to increase the propagule pressure of non-

native species such as Convolvulus arvensis and

Taraxacum officinale in Central Andes, Argentina

(Barros et al. 2020).

Interestingly, anthropogenic factors were not the

main factor along all roads. Indeed, in Malalcahuello

National Reserve road, the abundance of native

species explained most of the variance in the abun-

dance of non-native species. This road is characterized

by densely settled low elevation areas and grasslands

dominated by non-native species. But as elevation

increases, areas with a high richness of native species

can be observed, which would function as a biotic

filter for the establishment of non-native species. This

pattern coincides with the hypothesis of biotic resis-

tance that indicates that the most diverse communities

are more resistant to the invasion of non-native species

(Catford et al. 2009; Martin et al. 2009). Additionally,

areas with higher herbaceous cover had a lower

abundance of non-native species, indicating an impor-

tant biotic resistance of the native communities

towards the population increase of non-native species

(De Albuquerque et al., 2011; Phillips-Mao et al.

2014; Lembrechts et al. 2016).

It is important to highlight that abiotic conditions,

such as soil and air temperature, were in none of the

cases the most important driver at local scales, even

though they have been found to be crucial drivers of

local invasion in countless other studies, mainly at

high elevations (Giraldo-Cañas et al. 2010; Crespo-

Pérez et al. 2011; McDougall et al. 2011; Paiaro et al.

2011; Seipel et al. 2012; Tecco et al. 2016; Cuesta

et al. 2017). Our conclusions are however in line with

other studies showing that variables such as temper-

ature, precipitation and soil moisture are at local scales

usually subjugated by factors such as disturbance and

propagule pressure (Pollnac et al. 2012; Tomasetto

et al. 2013; Lembrechts et al. 2016; Buri et al. 2017).

In fact, the temperature values themselves (expressed

as Growing Degree Days in the air and soil) did not

vary significantly along the elevation gradient, as local

topographical and human-induced heterogeneity over-

rides the adiabatic lapse rate when measured in-situ

(Lembrechts et al. 2017). Additionally, disturbance

events create important changes in all these abiotic

factors, making disturbance proxies themselves better

explanatory variables than the separate abiotic condi-

tions related to climate (Lembrechts et al. 2016).

Finally, it is important to explain that a high

percentage (50%) of the variance of the data is not

being explained by the factors analyzed in this study,

under this context, we can identify at least three factors

that may be contributing to explain this percentage of

unexplained variance. First, the residence time of non-

native species, may explain patterns of declining non-

native plant richness and abundance as a function of

elevation, assuming that non-native plants have not

had sufficient time to colonize and disperse to higher

elevation areas (Haider et al. 2010; Alexander et al.

2016). Second, the biogeographic origin, where it has

been observed that the richness patterns of non-native

plants across the elevational gradient depend on the

pre-adaptation to the conditions of the ecosystem to be

invaded (Alexander et al. 2011). Observing that plants

coming from cold and temperate climate ecosystems

are more successful in colonizing higher elevation

zones, on the contrary non-native plants coming from

temperate ecosystems are more successful in estab-

lishing in low elevation zones (Haider et al. 2010;

Sandoya et al. 2017). Finally, functional traits (i.e.,

higher specific leaf area, less thickness and greater

nitrogen content) exhibited by some non-native plants

may give a competitive advantage over native plants,

which could explain the patterns of richness and

abundance across elevational gradients found in this

study (McDougall et al. 2018; Henn et al. 2019; Kühn

et al. 2021).
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Management recommendations for non-native

species

Our study again highlights the critical role of a wide

range of anthropogenic disturbances as drivers of non-

native plant invasions in mountains in Chile and across

the world, ranging from road building over human

settlements to agriculture and tourism. It is therefore

key to develop environmental education initiatives

about the ecological impact of non-native species for

tourists, park ranger, farmer and residents of these

vulnerable ecosystems. Based on this, it is also

necessary to generate control and management proto-

cols that allow the control of the growth and dispersion

of non-native species, and the conservation of undis-

turbed native vegetation in the peripheral areas of the

national reserves and along the roadsides into the

national reserves, in order to curb their further

expansion into these protected ecosystems. Addition-

ally, limiting agricultural, forestry activities in the

national parks is of utmost importance, due to their

important effects both on microhabitat conditions and

on the spread of propagules (Pauchard and Alaback

2004; Pauchard et al. 2016). As observed, the undis-

turbed, native flora can work as a biotic barrier to

avoid the presence of non-native species. Therefore,

generating initiatives to conserve undisturbed areas

with native flora also in the lower areas of the gradient

and preventing further low elevation land use changes

could help to mitigate the establishment of non-native

species and their consequent dispersion towards less

invaded high elevation areas.

Conclusion

Currently, both observational and experimental

research has shown a decrease in non-native species

with increasing elevation, mainly associated with the

effect of elevation on climatic variables such as

temperature. However, few studies looked at the

relative importance of underlying factors to this

elevational effect, both biotic and anthropogenic and

even abiotic (pH, nitrogen etc.) that may help to

explain the distribution patterns of non-native species

in mountain ecosystems.

Our observational study demonstrated that anthro-

pogenic factors (distance to human settlements and

distance to road) override the effect of abiotic factors

on the richness and abundance of non-native species at

the local scale. At the regional scale, however, non-

native plant species richness is mainly explained by

abiotic factors such as nitrogen content and pH, while

the abundance of non-native species is again explained

by anthropogenic factors.

Based on these results, we can reaffirm the conclu-

sion experimentally obtained by Lembrechts et al.

(2016) that anthropogenic factors are the most impor-

tant to understand the success of non-native species in

mountain ecosystems. Importantly, this implies that

climatic factors are currently an unlikely factor

limiting the distribution of non-native species along

altitudinal gradients, as shown for example experi-

mentally for the Swiss Alps (Haider et al. 2011) and in

mountain ecosystems of Chile and Norway (Lem-

brechts et al. 2016). These conclusions reinforce the

importance of keeping the expansion of human effects

to a minimum (tourism, presence of livestock, infras-

tructure), both through biosafety protocols or direct

control measures on tourism and agricultural activi-

ties. Only if such measures are taken, we will be able

to control the spread of non-native species in these

mountain ecosystems.
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